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Chapter 1
Introduction

It all started with a seat cushion given to me (first author) by a former colleague
12 years ago. This particular cushion, said my colleague, was not a regular cushion
but a professed anti-decubitus cushion and asked me if I had use for it. Since I had
always worked with technical materials, characterizing the polymeric soft foam
cushion material properties was the most obvious task to a materials scientist. How
the particular material and the cushion might interact with human body tissue
became increasingly preoccupying. After contacting the manufacturer for medical
bedding systems (generally referred to as aid devices or therapeutic appliances),
I learned that the term decubitus refers to ulcerated tissue (or pressure sore) which
recumbent patients or wheel-chair patients with strongly limited mobility are
likely to develop.

The more I learned about the development and design of such therapeutic
appliances, the more I questioned whether such devices could possibly fulfill their
claimed purpose, namely to prevent pressure sores. Even when these devices
fulfilled requirements such as efficient microclimatic conditions and toxicological
acceptability, it seemed unclear whether they could adequately reduce compres-
sive and shear loading at pressure sore prone body regions such as head, shoulder
or tail bone. Were they really designed and optimized to minimize peak pressure?

Although mattresses and cushions employed in anti-decubitus (and comfort
related) systems are mechanically tested in the lab with compression tests to
evaluate their mechanical properties, these tests do not involve human subjects.
Human subjects are, however, the ones meant to be well supported by such
devices. Only a few certified institutes employ physical dummy models (technical
materials in pelvic form) or abstract testing devices (cf. Fig. 1.1). The properties of
these dummies have very little in common with realistic anatomical and biological
properties of human material, such as skin, fat and muscle tissue.

Pressure mapping devices are still the method of choice (cf. Fig. 1.1) in testing
medical mattresses and cushions, as well as for automotive seating and sport shoes.
The imparted information is limited to contact pressure information between the
sensor system and the subject at the (skin) surface level. Pressure mapping devices
cannot provide information about the complex three-dimensional interaction
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process and stress distribution (three direct and three shear stress components at
each material point) at skin level and inside human tissue.

Various questionable systems are employed for shear force evaluation of human
skin (cf. Fig. 1.1), which at closer look and due to the employed materials and test
scenarios, have little in common with the actual interaction between material and skin.

To date, it has not been possible to judge the effects of therapeutic appliances
on (deeper) tissue regions. It has also not been possible to objectively evaluate the
complex (internal) tissue stress distribution due to external skin loading in the form
of compressive, tensile and shear stress. Shear stress is a prominent factor in
pressure sore development.

These shortcomings were the impetus for my co-author, Christophe Then, then
working in the field of finite element analysis, to place a virtual human model
(multi body system with rudimentary elastic outer-surface material properties and
mainly used for safety analysis in automotive engineering) on a bedding system
from the THOMASHILFEN company. Stress occurring in the mattress was then
observed, cf. Fig. 1.2.

At that time, simulations of dummy-car interaction in highly dynamic crash
scenarios were common practice. Though our test situation was much more
passive, it was possible to take a first step towards the goal of objectively
evaluating tissue and support material stress and strain. It became clear that better
understanding of mechanical interaction simulations between human dummies
and body supports would entail an adequate human body model with realistic
anatomical structures and realistic tissue material properties.

Within the next 5 years, in cooperation with physicians, health care profes-
sionals and biologists, a new and objective approach based on engineering-
scientific and medical-technologic methods was developed to judge the

Fig. 1.1 Systems for body support design and testing: a abstracted pelvis, b physical dummy
made from technical materials, c system for shear force evaluation of the human skin*, d dummy
employed in mattress testing, e pressure-sensor mat for shoes and for f seating systems (*adopted
from the draft supplement of the catalogue of therapeutic appliances ‘‘product group
11–decubitus’’ of the medical review board of the head organisations of health insurance
carriers (MDS)-sector ‘‘therapeutic appliances’’)

2 1 Introduction



effectiveness of therapeutic appliances. The research was conducted in the context
of various projects promoted by the University of Applied Sciences, Frankfurt/
Main, the State of Hesse, the Federal Ministry of Education and Research (BMBF)
as well as various industrial companies.

The approach has made it possible to objectively describe arbitrary mechanical
interaction between technical body support devices and the human body or single
body parts. Employing real human anatomical information, as well as mechanical in
vivo properties of human tissue (skin, fat, muscle, bone), it is thus possible to gain
knowledge of effects on tissue, preceding the manufacturing process of a support.
Using this process, body supports ranging from bedding to seating systems as well as
health care shoes, prosthetics, orthotics or stents can be evaluated. Comfort related
products such as automotive or airplane seats, sports shoes, protectors, helmets,
bicycle or motorcycle saddles can also be evaluated with this process.

In 2008, we were nominated for the GERMAN FUTURE AWARD for our achieve-
ments in this research area. Beginning in 2010, again based on our efforts, we were
funded for a three year time period by the Ministry of Higher Education, Research
and Arts (HMWK) within the framework of the federal state government ‘‘Landes-
Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz’’ (LOEWE)
program, funded by the state of Hesse (Germany), for a 3 year time period (see
acknowledgements).

Morbidity associated with demographic change as well as an increasingly
unhealthy lifestyle, resulting in diabetes, circulatory disease and adiposity are on
the increase. Accordingly, the need for support devices which do not cause tissue
damage is also steadily increasing. Body support devices and comfort related
products such as seating furniture, beds or (sports) shoes may, counter to intention,
worsen a medical condition or cause secondary complications by introducing
critical stress and/or strain inside tissue. Common examples are: bedridden or
wheel chair patients suffering from pressure sores due to inefficient cushioning;
flight passengers with an increased risk of thrombus formation on long distance
flights due to inappropriate seats; a diabetic foot syndrome treated with inadequate
shoes leading to amputation of the foot or the leg; stent rupture or migration
leading to vessel wall lesion; sports injuries due to inadequate sports shoes. Aside
from patient trauma and increased mortality caused by inappropriate support
devices, the cost is immense. Annual expenditure is estimated at several billion
euros in the Federal Republic of Germany alone. Well-directed design of
preventive aids could halve this cost.

Fig. 1.2 Early image of the mechanical interaction between an elastic foam support and a (rigid)
multi-body system, generated by the authors
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Therefore, innovative design criteria and methods for developing prophylactic
and therapeutic appliances as well as comfort related products are important.
Physical damage due to inadequate mechanical loading in the recumbent or seated
position and during walking or running (primary and/or secondary prevention) can
be avoided. In addition, pathologically altered (damaged) body regions can be
supported, so that affected anatomical structures may regain their original state and
function (tertiary prevention).

This book is restricted to (quasi-static) biomechanical interactions between human
models and bedding and seating systems such as anti-decubitus supports, comfort
mattresses and car and aircraft seats. The main intent is to present the methodological
application of engineering science to living objects and the mechanical description of
their soft tissue properties on the basis of in vivo experiments.

The procedure itself (which we refer to as Body-Optimization and Simulation-
Systems (BOSS-Procedure)) will be described in Chap. 2. In Chap. 3, the necessary
medical and engineering-scientific basics of the method are provided. In Sect. 3.1,
magnetic resonance tomography as an essential tool, is therefore presented. In the
following Sects. 3.2–3.5, engineering-scientific basics of continuum mechanics
and material theory as well as Finite Element Analysis (FEA) and numerical
parameter identification methods are introduced. Material theory is treated in
greater detail in Sect. 3.2, since it represents the foundation for material charac-
terization of human soft tissue and support materials based on continuum
mechanical material models. In this context, the linear theory of elasticity is no
longer sufficient and knowledge of (linear-) viscoelastic material models of finite
hyperelasticity are required. Section 3.2 is not a substitute for a textbook but is
intended as an introduction to mechanics of deformable bodies. It provides a rough
overview of, among other functions, the essential strain energy functions needed to
generate stress-material equations.

In Chaps. 4 and 5 methods regarding material identification of elastic
(equilibrium elasticity at steady state) and viscoelastic properties of body support
materials and human soft tissue materials are presented. Tissue identification
includes in vivo experiments on human subjects and is presented in detail.

Section 5.3 illustrates the approach of finite element human model (BOSS-
Models) generation based on magnetic resonance imaging and 3D-reconstruction
techniques. Various human BOSS-Models are presented. These models and single
body parts reflect actual biomechanical behaviour and appearance. The human
models are approximations in the sense that, depending on the application, certain
anatomical structures such as blood vessels, ligaments, tendons or nerves are
implemented only when needed. These models can be refined and improved only
to a certain extent since medical limits (resolution of medical imaging techniques)
or computer related limits (finite element models with extensive numbers of
elements) must be observed.

Chapter 6 provides examples of body-support interactions of the BOSS-Models
generated in Chap. 5 and support systems employed in medical health care with
elastic and/or viscoelastic material properties. The necessity of judging body
support systems based on their mechanical effects on the tissue, not just at skin

4 1 Introduction

http://dx.doi.org/10.1007/978-3-642-29003-9_1_2
http://dx.doi.org/10.1007/978-3-642-29003-9_1_3
http://dx.doi.org/10.1007/978-3-642-29003-9_1_3
http://dx.doi.org/10.1007/978-3-642-29003-9_1_3
http://dx.doi.org/10.1007/978-3-642-29003-9_1_3
http://dx.doi.org/10.1007/978-3-642-29003-9_1_3
http://dx.doi.org/10.1007/978-3-642-29003-9_1_3
http://dx.doi.org/10.1007/978-3-642-29003-9_1_3
http://dx.doi.org/10.1007/978-3-642-29003-9_1_4
http://dx.doi.org/10.1007/978-3-642-29003-9_1_5
http://dx.doi.org/10.1007/978-3-642-29003-9_1_5
http://dx.doi.org/10.1007/978-3-642-29003-9_1_5
http://dx.doi.org/10.1007/978-3-642-29003-9_1_6
http://dx.doi.org/10.1007/978-3-642-29003-9_1_5


level but in deeper tissue regions, taking objective mechanical tissue stress and
strain measures into account, is revealed. Interface pressure results from
(inaccurate) pressure mapping are shown to be insufficient.

In Chap. 7 a possible approach to biomechanical design optimization is demon-
strated based on the BOSS-Procedure. The method is presented based on a ‘‘manual’’
approach using the example of a newly developed bedding system, Sect. 7.1 and, in
Sect. 7.2, an (automated) approach is presented, based on a two-dimensional opti-
mization algorithm using the example of a seat cushion. With the bedding system the
difficulties arising in conjunction with interface pressure mapping as a validation and
optimization tool are demonstrated. Comparisons between BOSS-Model interface
pressure output and pressure mapping results are shown.

This volume is a preliminary summary in the form of a static snapshot, while
research and development are in permanent flow. Nevertheless, we hope to provide
and stimulate new approaches, ideas and motivation to the basic problem of
developing adequate body supports and therapeutic appliances for handicapped
and healthy subjects. This book is not a new textbook about human biomechanics
and the ambitious reader is referred to the fundamental works of Y.C. FUNG.
Rather, this book concentrates on the mechanical interaction between the human
body and body supports, whereby knowledge of the biomechanics of the human
body and in particular its material properties are necessary. At present, such
knowledge must be gained from in vivo investigation of material properties of
body tissues. Data derived from animals or ex vivo data are not sufficient!

An additional problem is the issue of biological variability in human anatomy
and human tissue properties during interaction between support and tissue. The
primary goal in this investigation was to establish systematic and objective
methods to realistically describe tissue interaction. Hopefully, the BOSS-Procedure
will allow evaluation of a more diverse population. An increased number of
subjects will allow statistical validation and correction of the data and may reveal
possible generalisation.

It is principally possible to evaluate the effects of tissue interaction in terms of
stress and strain at any position (element) of a BOSS-Model (depending on the
model quality). Not realized to date is a valid comparison of these quantities with
permissible ‘‘thresholds’’ and ‘‘deformation limits’’ (in common use with technical
materials and structures) where cell damage occurs. The critical thresholds of
reduced blood flow within blood vessels (32 mmHg) and critical pressures
obtained from measurements in the finger nail bed at the arteriolar end of a
capillary loop (12 mmHg), established in the 1930s by Trumble and Landis,
cannot be regarded as authoritative.

To establish acceptable limits, a first approach would be to correlate simulated
model quantities with human perception. This is difficult since subjective tactile
perception and sensation of pain occurs, leading to varying perceived limits.
Primary steps in this direction have been undertaken by asking subjects to report
perceived ‘‘pain’’ and/or ‘‘discomfort’’ when placed on various seat and bedding
systems, modelled with FEA. Due to confidentiality this has not been documented.
Whether a definitive border can be drawn at which tissue depth, discomfort or pain
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develops, remains to be seen. A simplified, practicable approach is presented in
Sect. 3.5 ‘‘Biomechanical Hypothesis’’. To adequately define limits, a model of
‘‘pain mechanics’’may be required, incorporating the nerves and receptors behind
muscle activity.

This book is for students in the engineering and biomechanical sciences.
Engineers, manufacturers and biologists, whose fields of activity involve
mechanical tissue description and analysis of tissue behaviour under external
loading, as well as biomechanically optimized design of body support systems,
may also find it useful.
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Chapter 2
The New Approach: BOSS-Procedure

Abstract A new approach (BOSS-Procedure) to mechanical soft tissue character-
ization and the generation of human body models (BOSS-Models) is introduced.
A stepwise procedure is presented to evaluate the mechanical properties of tech-
nical support device materials, such as bedding or seating systems or shoes, and to
evaluate in vivo properties of human soft tissue materials. Tissue properties are
assigned to the human BOSS-Models and their interaction with technical support
devices is investigated.

2.1 Introduction

An adequate method to quantify and qualify mechanical tissue interaction to
determine whether a technical support device (tSD) may negatively effect tissue
has, up to the present, not been developed. The newly developed BOSS-Procedure
combines all relevant data required to realistically, mechanically describe the
interaction of single human body regions and any tSD. The data are compiled from
three main areas, ‘‘experiments’’, ‘‘imaging techniques’’ and ‘‘constructional
data’’, Fig. 2.1. Whereas experiments were used to determine the mechanical
properties of the tSD material, as well as the biomechanical in vivo properties of
human soft tissue (fat-muscle compounds), imaging techniques provided
anatomical information for human body modeling (BOSS-Models) using
3 D-reconstruction tools.

Experimental procedures to test tSD materials are common in engineering,
unproblematic and can be carried out in the regular laboratory environment. In
vivo testing of living tissue is a greater challenge since, due to ethical reasons, it
must be non-invasive. The testing must also be performed in a defined and
reproducible manner.

G. Silber and C. Then, Preventive Biomechanics,
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In the method presented here all digitalized data were combined in a numerical
finite element model of the total interacting system, i.e. BOSS-Model and tSD,
to analyze tissue stress and strain during complex interaction.

2.2 Experiments with Technical Support Devices

Depending on the particular materials, quasi and/or transient static and dynamic
tensile or compression or shear tests were performed in a defined and repro-
ducible manner, using appropriate material samples. Based on the experimental
results, e.g. force–displacement data, parameter optimization was performed
employing adequate constitutive equations and numerical optimization
algorithms (curve fitting). Where a 3 D stress and strain state under loading is
indispensable, e.g. due to extensive lateral straining of the sample, the process of
material parameter identification must be accompanied by finite element
modeling of the experimental scenario (inverse FEM). In addition, material
exhibiting distinct viscoelastic features must either undergo an experimental
procedure capable of separating the elastic from the inelastic material properties,
or an appropriate material model must be primarily employed, not requiring such
separation, cf. Sect. 4.2.

Fig. 2.1 Schematic representation of the BOSS-Procedure using the example of the interaction
between a BOSS-Model and a soft foam mattress
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2.3 In Vivo Experiments with Human Tissue

Data acquisition for in vivo experiments on the human body requires a combination
of force–displacement testing. This can be achieved with tissue indentation together
with simultaneous tissue imaging, such as MRI or CT techniques, to capture the
undeformed anatomy at an initial unloaded state and the deformed anatomy under
loading. Based on the 2 D-imaging data of arbitrary undeformed tissue regions,
3 D-surface information of the anatomical structures can be reconstructed using
3 D-reconstruction tools. This surface data is used for FE-modeling. Compressive
indentation testing is most commonly employed in in vivo force–displacement
experiments, due to the high flexibility offat, connective and muscle tissue. The main
challenge was to develop an appropriate experimental design (MRI or CT compatible
testing device) and an evaluation procedure to separate the material behavior of the
single tissue components, based on the experimental results gained from the tissue
compound material. The methods for material parameter determination as well as
evaluation of the viscoelastic material properties of biological tissue employ the
same procedure (inverse FEM), cf. Sects. 3.4 and 5.2.

2.4 Ex Vivo Experiments with Human Tissue

Acquiring in vivo data from mechanical experiments on human ligaments, tendons
or blood vessel wall material is not feasible to date. Thus, samples such as
aneurysm wall material have been removed from patients during surgery or taken
post mortem and then subjected to mechanical characterization. Uniaxial or
multiaxial tensile tests are most often performed. The method is based on the
experimental results and employed for material parameter identification and is
orientated according to the in Sects. 5.2.2–5.2.5 representated procedure.

2.5 Design Data (CAD Data of Technical Support Devices)

Design data of the tSD is used as the basis for finite element mesh generation.
If such data is not available, it must be manually generated.

2.6 FE BOSS-Models

To simulate the interaction between the human body and a tSD, adequate models
of the human body and single body regions, including realistic anatomy as well as
in vivo tissue material properties are indispensable. Magnetic resonance imaging
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or computer tomography were used as the basis in the modeling process. Each
scanned 2 D-slice has to be reconstructed so that the single tissue types, skin,
adipose tissue, muscle tissue, bone etc., can be separated and then can be recon-
structed with appropriate tools (MIMICS

� or SIMPLEWARE
�) to generate 3 D surface

data. With the help of pre-processing software (HYPERMESH
� or ANSA

�), a finite
element mesh is to generate based on these surface data, cf. Sect. 5.3.

2.7 FE Model of the Interaction System

To finally perform simulations of tissue/support interaction, both units, human
body model and tSD must be merged, using defined boundary conditions
according to the desired loading situation. In addition, the previously established
material parameters must be assigned to the specific body regions and the tSD
materials, cf. Chap. 6.

2.8 Numerical Simulation of the Tissue-Support Interaction

The final simulation of tissue loading was performed using an appropriate equation
solver (e.g. ABAQUS

� or ANSYS
�). Post-processing of the simulation data was done

by means of processing software such as ABAQUS-VIEWER
� or HYPERVIEW

�. Tissue
stress and strain were thus evaluated and visualized, cf. Chap. 6 and Chap. 7.
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Chapter 3
Fundamentals

Abstract Imaging techniques, such as magnetic resonance imaging (MRI), are
described by introducing the mathematical and physical role of the relaxation
times T1 and T2 and the resonance condition, (Sect. 3.1). An introduction to
material theory and continuum mechanics is provided, since they play a key role in
the mechanical characterization of human soft tissue materials, (Sect. 3.2). Finite
element analysis (FEA) and material parameter identification, provided in
Sects. 3.3 and 3.4, give insight into tissue modelling and characterization. Based
on experimental findings provided in the literature, biomechanical hypotheses
regarding tissue failure are discussed, (Sect. 3.5).

3.1 Magnetic Resonance Imaging

3.1.1 Introduction

Several MRI methodologies were applied which provided detailed images of the
human anatomy.

• The images represented the basis for finite element model generation.
• The images played an essential role in in vivo mechanical characterization of

elastic and viscoelastic properties of human gluteal fat and muscle tissue.
• The images provided key information in validating tissue material parameters

under complex tissue loading.

A comprehensive overview of the physics basics for MR-imaging can be found
in Hillebrands and Ounadjela (2002, 2003), Haake et al. (1999), or Peters et al.
(1998). Image reconstruction is discussed and fundamental relations on continuum
mechanics and on the finite element method are provided. Besides the practical use
of image reconstruction and modelling techniques, theoretical aspects are also

G. Silber and C. Then, Preventive Biomechanics,
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important since continuum mechanics constitute the mathematical framework of
the finite element method, extensively used in Chaps. 5, 6 and 7 for numerical
simulation.

3.1.2 Fundamental Equations

The terms T1 and T2, as weighting terms used in MRI, are discussed by introducing
basic mathematical relations.

In a static magnetic field, nuclear magnetic resonance permits non-invasive
body tissue imaging. To avoid a misleading association with radioactivity the
technique is commonly termed magnetic resonance or MRI. The diagnostic
principle relies on the influence of an external magnetic radiofrequency field on
the magnetic alignment of the atomic nuclei of the 1H-isotope, which occurs in
living tissue. Three-dimensional images can be obtained. Atomic nuclei, like those
of the 1H-atom, with an odd atomic number (odd number of protons, neutrons or
both) possess a fundamental intrinsic physical property, the intrinsic angular
momentum or spin angular momentum or simply spin for short. The spin s of the
nucleus is a result of the spin of its nucleons, i.e. protons and neutrons, and their
constituent parts, quarks and gluons, respectively. Due to s, i.e. the intrinsic
spinning motion of a charged particle, which is independent of its motion in space
(cf. e.g. ‘‘electron orbital motion’’), an atomic current is produced (in a closed
circuit of atomic dimensions). Elementary particles and nuclei behave as if they
possess a magnetic dipole moment, commonly denoted l, oriented in the direction
of the spin axis. The magnetic dipole moment is proportional to the intrinsic
angular momentum spin, l� s where the proportionality constant is given through
the gyromagnetic ratio c:

l ¼ c s and s ¼ 1
c

l: ð3:1Þ

The direct relationship (3.1) is empirically deduced since the value of c is a
constant for any particular type of elementary particle or nucleus. The differences
in c-factors make electrons unusable for MR-imaging. Since the c-factor also
depends on the particle mass and the proton mass is more than three orders of
magnitude larger than the mass of the electron, a much higher frequency, and thus
higher energy, would be needed to change the initial alignment of electron mag-
netic dipoles.

In (3.1), as an experimental fact (e.g. STERN–GERLACH-experiment), the angular
momentum spin is not spread continuously, since in quantum mechanics, it is
quantized, i.e. it cannot take any indiscriminate value but only discrete multiples
of �h; where �h is the reduced Planck’s constant. Equation (3.1) thus yields

l ¼ c sq with k sqk ¼ �h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðsþ 1Þ
p

ð3:2Þ
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where s is the spin quantum number that can only take integer or half integer
values, and under quantum mechanical considerations sq denotes the quantized
spin angular momentum vector.

In the case of the proton s ¼ 1=2: The proton spin angular momentum vector
thus has two possible alignments, i.e. two quantum spin states: parallel (spin-up) or
anti-parallel (spin-down) to a static external magnetic field, whereas the parallel
alignment provides a minuscule energy advantage. The parallel and anti-parallel
oriented magnetic dipoles cancel out, and the excess of parallel oriented magnetic
dipoles (‘‘excess protons’’) generate a net magnetization (exceeding approximately
9 in one million at B0 = 1 T and T = 293 K of parallel spins compared to anti-
parallel spins). Despite this small fraction, the large number of protons present in
living tissue, i.e. structure and interstitial liquid (e.g. fat molecules or tissue water),
permit a measurable net magnetization (about 6.0 9 1010 excess protons reside in
a volume element of 1 9 1 9 1 mm3).

Thus, in a strong external magnetic field, as induced in MR-imaging, the
magnetic dipole moment of the hydrogen nucleus interacts, such that the dipole
lines up parallel or anti-parallel to the direction of the field. Nuclei with an even
number of nucleons (paired nucleons) are not affected by an external magnetic
field due to zero net magnetization of the nucleus; the single magnetic dipoles
cancel each other.

The alignment of the hydrogen proton dipoles in a static external magnetic field
is due to a torque T; which is induced by the field and in terms of classical
mechanics is given for a magnetic dipole through the cross-product

T ¼ l� B0 ð3:3Þ

where l is the previously introduced magnetic dipole moment (see (3.1)) and B0 is
the external magnetic vector field.

Due to the applied torque T the dipole lines up in the direction of the field
whereas the spin angular momentum of the proton changes according to

ds

dt
� _s ¼ T: ð3:4Þ

Substituting (3.1) and (3.2) in (3.4), a vector-valued differential equation of
motion of l with respect to time is obtained representing the behaviour of mag-
netic dipole moment out of the equilibrium state

_l ¼ cl� B0: ð3:5Þ

In general, the time derivation of a vector, and thus also dl=dt; yields

_l � dl

dt
¼ dGl

dt
þ x� l ð3:6Þ

with the relative derivation dGl=dt; the directional derivative x� l and the
angular velocity vector x describing the spatial rotation of the orthogonal basis.
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On the other hand, it can be shown that due to the structure of (3.5), the relative
derivation dGl=dt must vanish (this can be demonstrated by scalar multiplication
of (3.5) with l and presenting the vectors in any arbitrary basis) such that (3.6)
degenerates to

_l ¼ x� l � �l� x ð3:7Þ

(note in (3.7) the anti-commutativity of the cross product). By substitution of (3.7)
in (3.5) it follows after rearrangement

l� xþ cl� B0 � l� ðxþ cB0Þ ¼ 0: ð3:8Þ

Since, in general, l is not aligned parallel to B0 and x; the bracket term in (3.8)
must vanish for l 6¼ 0: This, however, immediately leads to the (coordinate-
invariant) LAMOR-equation (Joseph LAMOR, Irish physicist: *1857–�1942)

x ¼ �cB0 and xL ¼ cB0 ð3:9Þ

with xL termed LARMOR-‘Frequency’. It represents the response of a single proton,
i.e. single magnetic moment, in an external field without considering any inter-
action with the environment, i.e. the magnetic fields produced by the spin of
neighbouring protons. The LARMOR-Frequency depends on the specific elementary
particle species, and it varies with the strength of the external magnetic field.

The torque T induced by the external magnetic field B0 (see (3.3)) acting
perpendicular to the spin axis on the proton’s magnetic dipole moment l thus leads
to a precession with angular frequency xL about the external magnetic field’s
longitudinal axis on basis of the law of conservation of angular momentum. In case
of a static field, the rotation is a constant precession.

Proceeding from microscopic magnetization resulting from one single proton to
a finite number N of protons contained in a certain volume element (voxel, abbrev.
for volumetric pixel) with volume V, the vector sum of the magnetic dipole
moments leads to a macroscopic net magnetization M in the direction of the
external field, i.e. the magnetic dipole moment per unit volume V (this is done by
introducing li; into (3.6) and summing both sides over i and dividing by V)

M ¼:
1
V

X

N

i¼1

li ð3:10Þ

where the order of the series expansion N is the number of protons contained in
V. Due to incoherent precession, the vector sum of magnetization in the x–y-
direction vanishes.

Using (3.5) and the summed magnetic dipole moments (3.10), results in a
differential equation in terms magnetization

_M ¼ cM � B0: ð3:11Þ
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3.1.3 BLOCH-Equation and Static Field Solutions

If, in addition to the external magnetic field, other magnetic fields are superposed,
the magnetization M changes, and due to spin–spin-interaction and spin–lattice-
interaction, the magnetization approaches a relaxed or equilibrium steady state, not
instantaneously, but within a definite time. This empirical process is described by
introducing specific relaxation terms in (3.11) containing distinct times to reach
the relaxed state. Equation (3.11) is modified accordingly.

The augmented form of (3.11), the so-called BLOCH-Equation, thus reads (3.12).
It was introduced by Felix BLOCH in 1946 and is referred to as the BLOCH-Equation.
Felix BLOCH (*1905–�1983) was (together with E. M. PURCELL) awarded the NOBEL

Price in physics in 1952 for his contribution to nuclear magnetic measurements,
which provided the underlying principles of MR-imaging)

_M ¼ cM � B0 �
1
T1
ðMjj �M0Þ �

1
T2

M?: ð3:12Þ

Dividing the macroscopic net magnetization M into portions parallel and
orthogonal to the vector field B0 leads to

M ¼ M? þMjj ð3:13Þ

with the following properties

M? � B0 ¼ 0 Mjj � B0 ¼ 0: ð3:14Þ

Thus, (3.12) can be written as

_M? þ _Mjj ¼ cM? � B0 �
1
T1
ðMjj �M0Þ �

1
T2

M?: ð3:15Þ

After separation, and using relation (3.14)2, (3.15) leads to the following
coupled vector-valued linear first-order system of differential equations for both
portions, M? and Mjj;

_M? ¼ cM? � B0 �
1
T2

M?

_Mjj ¼ �
1
T1
ðMjj �M0Þ:

ð3:16Þ

To solve (3.16), it is convenient to represent all vectors in Cartesian
coordinates:

M? ¼ Mxex þMyey; Mjj ¼ Mzez; M0 ¼ M0ez; B0 ¼ B0ez: ð3:17Þ

Thus, together with (3.17), all terms in (3.16) read
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M? � B0 ¼ ðMxex þMyeyÞ � B0ez ¼ B0ðMyex �MxeyÞ
_M? ¼ _Mxex þ _Myey; _MII ¼ _Mzez:

ð3:18Þ

Substituting (3.17) and (3.18) in (3.16) and taking (3.9)2 into account, leads
after comparison of coordinates in ex�; ey� and ez-direction to the following
coupled scalar-valued linear first-order system of differential equations for the
coordinates Mx; My and Mz of the net magnetization vector M

_Mx ¼ �xLMy �
1
T2

Mx

_My ¼ xLMx �
1
T2

My

_Mz ¼
1
T1
ðM0 �MzÞ:

ð3:19Þ

The solution of both coupled differential equations (3.19)1 and (3.19)2 is
obtained, for instance, by eliminating one of the respective moment coordinates
and an ordinary differential equation of the form €Mk þ ð2=T2Þ _Mk þ
ðx2

L þ 1=T2
2 ÞMk ¼ 0 with (k = x, y) is obtained. Its solution using MkðtÞ ¼ Cekt

leads to the characteristic polynomial of the form k2 þ ð2=T2Þkþ x2
L þ 1=T2

2 ¼ 0
with the roots k1;2 ¼ �1=T2 � ixL (the solution may also be generated using
matrices formulations). Substitution of both integration constants by Mxð0Þ and
Myð0Þ; leads to (solution (3.20)3 is obtained for instance from (3.19)3 by separation
of variables)

MxðtÞ ¼ e�
t

T2 ½Mxð0Þ cos xLt �Myð0Þ sin xLt�
MyðtÞ ¼ e�

t
T2 ½Myð0Þ cos xLt þMxð0Þ sin xLt�

MzðtÞ ¼ Mzð0Þ e�
t

T1 þM0ð1� e�
t

T1Þ:

ð3:20Þ

Using (3.13) together with (3.17), the net magnetization vector M is given by
(cf. also Fig. 3.1)

Fig. 3.1 Trajectory of the
net magnetization vector in
the fixed reference frame
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MðtÞ¼e�
t

T2f½Mxð0ÞcosxLt�Myð0ÞsinxLt�exþ½Myð0ÞcosxLtþMxð0ÞsinxLt�eyg
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M?ðtÞ

þ ½MZð0Þe�
t

T1þM0ð1�e�
t

T1Þ�ez
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

MjjðtÞ

ð3:21Þ

or

MðtÞ ¼ e�
t

T2f½Mxð0Þex þMyð0Þey� cos xLt þ ½Mxð0Þex �Myð0Þey� sin xLtg
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M?ðtÞ

þ fM0 � ½M0 �Mzð0Þ�e�
t

T1gez
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

MjjðtÞ

: ð3:22Þ

The stationary solutions for t!1 derive from (3.20), (3.21) and (3.22) to (cf.
also Fig. 3.2)

lim
t!1

MxðtÞ ¼ 0; lim
t!1

MyðtÞ ¼ 0; lim
t!1

MzðtÞ ¼ M0 ð3:23Þ

or in vector notation

lim
t!1

MðtÞ ¼ M0ez: ð3:24Þ
Equation (3.22) describes the regrowth and decay of the net magnetization

vector in the longitudinal and transversal directions, respectively. Figure 3.1
illustrates the trajectory of the magnetization vector in the fixed reference frame.

Equations (3.19) describe the motion of the magnetic dipole moments when
initially being rotated away from the static magnetic field’s longitudinal (z-)
direction and returning to the equilibrium state. Whereas (3.19)3 describes the
recovery of the longitudinal magnetization in time, (3.19a)1 and (3.19b)2 represent

Fig. 3.2 a Recovery of the longitudinal component of magnetization from the initial value
Mzðt0Þ to the equilibrium value M0 at time t !1; b decay of the transverse magnetization
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the decay of the transverse magnetization. The shape of the exponential recovery
and decay curves of the longitudinal and transverse magnetization, respectively,
are determined by the time constants T1 and T2; respectively, cf. Fig. 3.2.

As can be seen in Fig. 3.2a, after time T1; the longitudinal magnetization has
returned to 63.3 % of its equilibrium value M0; and after time T2; the transverse
magnetization has lost 63.3 % of its original value M?ðt0Þ: Approximate values for
T1 and T2 for fat and muscle tissue are given in Table 3.1.

Both mechanisms, the longitudinal magnetization recovery and the transverse
magnetization decay, describe the return to equilibrium of net magnetization. They
are referred to as Relaxation. The decay of the transverse magnetization, as dis-
cussed previously, assumes homogeneity of the external magnetic field. In prac-
tice, however, the field exhibits inhomogeneities, which accelerate the decay of
transverse magnetization, referred to as dephasing (loss of phase-coherent rota-
tion) and thus lead to a revised decay time T	2 :

Both relaxation processes are driven by different mechanisms and are inde-
pendent. Transverse relaxation decays due to the dephasing effect where direc-
tional changes (of phase coherence) of the single magnetic dipole moment vectors
in the x–y-plane cause the magnetization to cancel out, i.e. to decay. The loss of
phase coherence is due to variation in the local magnetic fields affecting the single
magnetic dipole moments, i.e. the combination of the external field and the local
fields generated from neighboring dipole moments. These field fluctuations lead to
different local precessional frequencies and finally to the dephasing effect.

Approximate values for T1 and T2 for fat and muscle tissue are listed in Table 3.1.

3.1.4 Resonance Condition

Relaxation of longitudinal and transverse magnetization is achieved if the mag-
netic moments that initially precess about the static external field z-axis are
transiently rotated away from this direction into the x–y-plane transverse to the
external magnetic field B0: This is accomplished by adding other magnetic fields,
e.g. a (transient) radio frequency (rf) field B1; perpendicular to the external field. In
contrast to B0; the rf-field is not static but oscillates, since it is generated from coils
supplied by an alternating current with the frequency x: It shows that an adequate
(in terms of amplitude) B1-field to most effectively rotate the magnetic moment
into the transverse x–y-plane is obtained by adding two linearly polarized fields
with polarization planes orientated at right angles. The polarization planes have the

Table 3.1 Approximate values of human tissue relaxation parameters at B0 ¼ 1:5 T and body
temperature

Tissue T1 (ms) T2 (ms)

Fat 250 60
Muscle 900 50
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same frequency and amplitude, but 90� phase difference (phase quadrature), to
obtain a left-circularly polarized field.

In the rotating reference frame (cf. Fig. 3.1) the B1-field is given in r-direction as

B1 ¼ B1er: ð3:25Þ

The transverse amplitude B1 is thus constant in terms of magnitude in the
rotating reference frame and is permanently (as long as the B1 field is turned on)
tipping the magnetic moments away from the z-direction into the x–y-plane. This
process is not continuous (in terms of arbitrary continuous angles between the
z-axis and x–y-plane, as provided in classic mechanics) but discrete, as motivated
by quantum mechanics with two possible conditions for the proton: precession
about the z-axis ðB1 ¼ 0Þ or precession about an axis situated in the x–y-plane,
referred to as ‘spin-up’ and ‘spin-down’, respectively. Due to quantum mechanics,
the rotation of the magnetic moments is often referred to as the flip-angle. (A flip-
angle of 90� flips the precession of the magnetic moment, initially along the z-axis,
into the plane transverse to the static field).

Based on (3.9), a relation between the gyromagnetic ratio c and the magnetic
field strength B1 and the resulting spin angular precessional frequency x1 of the
magnetic moments generated by the circular polarized field B1 (assuming that no
additional field is apparent and B1 is aligned along the rotating r-axis) around the
r-axis of the rotating reference frame can be established with

B1 ¼
x1

c
er: ð3:26Þ

To determine the frequency x of the rf-field required to effectively rotate the
magnetic moment into the x–y-plane, the effective magnetic field is derived.
Generally, the time derivation of the magnetic moment vector l is represented
with respect to the rotating reference frame by

_l � dl

dt
¼ dGl

dt
þX� l ð3:27Þ

with the relative derivation dGl=dt; i.e. the time change of l with respect to the
rotating frame, the directional derivative X� l with the angular velocity vector X
describing the spatial rotation of the orthogonal base of the rotating frame.

Together with (3.5), the following is obtained

dGl

dt
¼ _lþ l�X ¼ cl� B0 þ l�X � cl� B0 þ

1
c
X

� �

¼! cl� Beff

with Beff :¼ B0 þ
1
c
X: ð3:28Þ

The ‘magnetic’-term of the above vector product can be interpreted as the
‘‘effective’’ magnetic field Beff acting on the magnetic dipole moment, as observed
in the rotating reference frame.
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In the presence of a radio frequency field (3.26), to rotate the magnetic moment
vectors, the effective field (3.28)2, must be extended to

Beff :¼ B0 þ
1
c
Xþ B1 ð3:29Þ

where B0 þ 1
c X is referred to as the external field Bext:

Using the LAMOR-Frequency (3.9), of the magnetic dipole moment, existent
when excited by a single magnetic field B0; as well as the angular velocity of the
clockwise rotating reference frame X ¼ xeu � er ¼ �xez and the precessional
angular frequency x1 ¼ cB1 (3.26) about the rf-field axis as a result of the
B1-field, the effective magnetic field defined in (3.29) can be written as

Beff ¼
1
c
ðxL � xÞez þ

x1

c
er: ð3:30Þ

Equation (3.28)1, thus yields

dGl

dt
¼ l� ½ðxL � xÞez þ x1er�: ð3:31Þ

If the radial frequency of irradiation x; i.e. of the rotating reference frame
matches the precessional frequency of the magnetic dipole moments xL the first
term in brackets of (3.31) vanishes (i.e. the external field Bext vanishes from the
rotating frame of reference) and there is only a precession about the rotating
er-axis with the precessional frequency x1: In terms of frequency of oscillation of
the circular polarized field B1; the B1-field is thus most efficiently synchronized
to rotate the magnetic dipole moments if its frequency x is equivalent to
xL(resonance condition).

The BLOCH-Equations derived in Sect. 3.1.3 are valid for a static external
magnetic field parallel to the z-direction. In case of a combined static field and an
rf-field, the resulting motion of the magnetic dipole vectors and magnetization,
respectively, derives as follows.

With respect to the rotating frame, the (effective) magnetic field is given by
(3.30). The projection of the (effective) magnetic field vector Beff onto the rotating
frame axis yields the magnitude B1 along the r-axis, zero along the u-axis and Bext

or ðxL � xÞ=c along the z-axis. The projections of the net magnetization vector
M onto the rotating frame axis are given by Mr; Mu; and Mz:

Mjj ¼ Mzez and M? ¼ Mrer þMueu: ð3:32Þ

Expanding the BLOCH-Equation (3.12), to the effective magnetic field with
respect to the rotating reference frame one obtains regarding (3.9), (3.17), (3.30)
and (3.32)
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dGM

dt
¼ cM � Beff �

1
T1
ðMz �M0Þez �

1
T2

M?

¼ cðMrer þMueu þMzezÞ �
x1

c
er þ

1
c
ðxL � xÞez

� �

þM0 �Mz

T1
ez �

Mrer þMueu

T2

¼ ðxL � xÞMu �
Mr

T2

� �

er þ ðx� xLÞMr þ x1Mz �
Mu

T2

� �

eu þ
M0 �Mz

T1
� x1Mu

� �

ez:

ð3:33Þ

From (3.33) the changes of magnetization of the single coordinates of the
magnetization vector M, with respect to time and with respect to the rotating
coordinate axes thus read

dGMr

dt
¼ �Mr

T2
þ ðxL � xÞMu

dGMu

dt
¼ ðx� xLÞMr �

Mu

T2
þ x1Mz

dGMz

dt
¼ ðM0 �MzÞ

T1
� x1Mu:

ð3:34Þ

3.1.5 Signal Detection

Due to the rf-field, the magnetic dipole moments are rotated into the x–y-plane.
The resulting motion is a spiral motion (nutation) in a downward z-direction, due
to the still ongoing precession about the static field z-axis. In this process the
transverse magnetization component increases until it reaches its maximum, when
it is completely tipped into the x–y-plane. After the rf-field has been switched off,
the magnetization returns to its equilibrium state (longitudinal magnetization in
time T1 and transverse magnetization in time T2) and the magnetic dipole moments
again align along with the external B0-field. In both processes, the magnetic field
and the net magnetization (vector) respectively, of the moving magnetic dipoles
change accordingly during the downward and upward movement. These field
changes cause electromotive forces to be induced in nearby rf-coil elements (MR-
signal). The resulting generated currents (following Faraday’s induction law)
provide the information that is finally transformed into the MR-image. Electrical
power production using spinning electromagnets near conducting coils may serve
as an analog to the induction process on the macroscopic scale.

The currents generated in the coil wires follow decay with the revised decay time
T	2 due to dephasing of the transverse magnetization. The corresponding signal in
the time domain is called free induction decay (FID). Controlled on–off switching
of the rf-fields is referred to as pulsing, and a set of rf-pulses is termed pulse
sequence. A 90� FID pulse sequence rotates the magnetization by 90� into the x–y-
plane, whereas the spin-echo sequence combines a 90� and a 180� rotation: after a
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90� flip into the x–y-plane and partial dephasing a 180� flip about the r-axis of the
rotating reference frame with rephasing of magnetization follows.

The MR-signal depends on the density of tissue protons, the magnetic field
strength of the static field B0 (which determines the time T1 of longitudinal
magnetization), the longitudinal relaxation time T1 (time period until 63.3 % of
tissue may experience full re-excitation) and the transverse relaxation time T2

(time duration of the MR-signal). To obtain the MR-image, the protons of each
slice of imaged tissue must be excited multiple times. The contrast of the obtained
image is determined by the time period between different rf-excitations (repetition
time:TR) and the time between excitation and signal detection (echo time: TE).
Depending on the variation of these time periods, the image contrast is either
referred to as T1-weighted or T2-weighted.

A further crucial point is to correlate the measured MR-signals with the par-
ticular spatial body location (spatial encoding). This leads to a revision of (3.9) by
augmenting dependency of the magnetic gradient field strength (3.35). The total
magnetic field B ¼ Bðx; y; z; tÞ; and correspondingly the precessional frequency
x ¼ xðx; y; z; tÞ; depends on the particular spatial position

xðx; y; z; tÞ ¼ cBðx; y; z; tÞ with Bðx; y; z; tÞ ¼ B0 þ xGxðtÞ þ yGyðtÞ þ zGzðtÞ
thus xðx; y; z; tÞ ¼ x0 þ cxGxðtÞ þ cyGyðtÞ þ czGzðtÞ ð3:35Þ

where GhðtÞ with h ¼ ðx; y; zÞ denotes a transiently applied (and spatially constant)
magnetic field gradient in the h-direction whose z-component linearly varies along
the h-direction and is augmented in the static field B0

GxðtÞ ¼
oBzðtÞ

ox
; GyðtÞ ¼

oBzðtÞ
oy

and GzðtÞ ¼
oBzðtÞ

oz
: ð3:36Þ

Practically, the superposition of the static field with gradient fields is achieved
by employing gradient coils which (most usefully linearly) vary the static
magnetic field in spatial directions. Specifically, the static external field B0 is
superposed by a linearly varying magnetic field in the z-direction, which makes the
precessional frequency also (linearly) vary in that direction. In a single slice-plane
and slice-volume (perpendicular to z) the precessional frequency of the protons’
magnetic moments in the direction of the homogenous field is thus equal. Each rf-
signal (which is equivalent to a particular frequency) thus excites only the protons
processing with that particular frequency (cf. resonance condition (3.31) according
to (3.35), i.e. only those protons contained in the particular slice (slice selection).
Only those magnetic dipole moments are being rotated into the transverse plane
that satisfy the resonance conditions. Since neighboring protons exhibit different
resonance frequencies, they are not affected.

To obtain spatial information, additionally, x- and y-gradient fields are super-
posed. The x-gradient field most often serves to encode the frequency, whereas the
y-gradient field is used for phase-encoding of the precessions of the magnetic
moment vectors. In this process, each slice is divided into a matrix where each
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field represents a spatial volume element. Due to variation of the magnetic field in,
for instance, the y-direction, phase- incoherent precession of the protons’ magnetic
moments is achieved, and each row and column of the matrix thus exhibits a
precessional motion with distinct phase-difference (phase-gradient field). After
switching off the phase-gradient field, the magnetic dipole moments in one slice
return to rotation with the same frequency. The phase-difference, however, is still
preserved. Ensuing variation of the magnetic field in the x-direction clearly links
the frequency with a spatial x-position. (Each row and column of the slice matrix
experiences the same magnetic field strength. Thus, these magnetic moments
exhibit the same resonance frequency). Phase difference and frequency difference
(together with slice position) allow clear spatial assignment of each volume ele-
ment, since each net magnetization vector belonging to a particular slice matrix
field is characterized by a unique phase angle and precessional frequency. The
resulting matrices thus contain specific frequency and phase-shift information,
which can be used to generate two-dimensional images. This reflects the spatial
distribution of excitable nuclei, such as the hydrogen nucleus.

The simplest pulse sequence thus contains a 90�-pulse (for rotation into the
transverse plane), a slice-selection gradient pulse (z-position), a phase-encoding
gradient pulse (y-position), a frequency-encoding gradient pulse (x-position) and
the actual MR-signal induced in the coil’s elements.

Image generation is accomplished using the frequency (and phase) content from
the net magnetization vector of the induced MR-signals. The Fourier transfor-
mation method is used to decompose the MR-signal (content) containing a fre-
quency composition into discrete frequency (and phase) information, to finally
spatially assign them to single slice matrix fields. The resulting MR-images are
generally shown in a grey-scale format where brighter regions indicate a higher
density of excitable elementary particles.

3.1.6 MRI-Assembly

A basic overview of the main parts of the MRI device is provided, with the
different coils and their functions being presented. Some information has previ-
ously been provided but redundancy is maintained for better understanding.

In Fig. 3.3 the coil assembly is schematically depicted. Most efficiently, a
superconductive magnet is used to generate the static magnetic field B0

in the z-direction. This magnet type is composed of superconductive wires
(Niobium–Titan alloy) enclosed by liquid helium, which serves as a cooling liquid
at a temperature of about T = 4 K.

The gradient coils generate (in addition to the homogenous static field B0) the
magnetic field variations in the x-, y- and z-directions required for creating a
unique magnetic field (unique resonance frequency) at each spatial position,
allowing for frequency and phase encoding. The rf-coils generate the radio-
frequency field B1 perpendicular to the static magnetic field B0 to rotate the
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magnetization into the transverse plane, and serve as detector coils for MR-signal
detection (surface rf-coils).

Shim coils are utilized to improve the homogeneity of the static field B0. These
are required due to magnet inhomogeneities and/or presence of external ferro-
magnetic objects disturbing the field homogeneity. The use of shim coils, referred
to as active shimming, employs low currents to balance the external field. Iron
sheets are used to cover the magnet, employing passive shimming.

Exemplarily, the field z-gradient generated by z-gradient coils is depicted in
Fig. 3.4.

Fig. 3.3 Schematic MRI-coil assembly

Fig. 3.4 Variation of the total magnetic field strength B(z, t) indicated by (red line) along the z-
axis
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3.2 Continuum Mechanics

3.2.1 Introduction

When any region of the human body comes into contact with a technical support
device (tSD) such as seating, bedding or shoe systems, the affected soft tissue
regions (adipose and muscle tissue of the gluteus, foot or leg etc.) are considerably
deformed due to contact loading. The term large or finite deformation is used in
mechanics and the quantification of such deformation and corresponding
mechanical stress becomes necessary. These processes may be considered and
described on the atomic level, the molecular or cell level or on the macroscopic
level. In the engineering–scientific approach, macroscopic modelling is preferred,
whereby a tissue region is considered as a large accumulation of single cells, and
thus is considered as a continua.

The existence of finite deformations is associated with non-linear material
behaviour of the biological structures. This makes non-linear continuum
mechanics an appropriate tool to describe such phenomena. The same approach
applies for the description of tSD materials (polymeric soft foams, rubberlike
materials etc.) which also exhibit finite deformation under loading.

Basic continuum mechanics connected with material parameter identification
needed for generation of human tissue modeling and tSD material characterization
is exemplified. The guidelines provide an overview of the theoretical aspects
required for continuum mechanical modelling in Chaps. 4–7. They do not replace
classical textbooks and for thorough understanding of continuum mechanics for
instance Silber and Steinwender (2005), Holzapfel (2000), Mase (1970), Gurtin
(1981), Wriggers (2008), Ogden (1984), or Bowen (1989) may be used as
references.

The compact and coordinate-invariant notation is preferably used where scalars
are written in regular roman form (t, m, E etc.), vectors are written as italic bold
roman lower-case characters (u, b etc.) and tensors are written as italic bold roman
upper-case characters (F, C etc.). In addition to the compact representation of
mathematical formulae, matrix as well as Cartesian representation is used together
with the Einstein notation. The Einstein convention is as follows: a term of a tensor
expression that contains the repetition of an index denotes a summation with
respect to this index over its range.

3.2.2 Material Phenomenology

Characteristic material properties are illustrated in the form of stress–strain, stress–
time and strain–time diagrams. Some of these characteristics will be shown to be
relevant with respect to modeling and simulation aspects in subsequent chapters.
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3.2.2.1 Stress–Strain Behaviour

In Fig. 3.5, idealized stress–strain curves of some important materials are quali-
tatively (not to scale) depicted, where arrows represent loading and unloading path
directions. Numbering corresponds to the curve numbers in Fig. 3.5.

1. Rigid Material. Materials show practically no deformation under arbitrary
loading. This assumption is extremely idealized and is valid only for mate-
rials that exhibit negligible small deformation. The loading and unloading
path corresponds to a vertical line.

• Elastic material behaviour is characterized by identical loading and unloading
paths. The loaded component recovers its original configuration. This process is
reversible and such materials are said to have no memory. The following cases
can be distinguished:

2. Linear-Elastic Materials. The stress–strain response is linear up to the
proportionality limit (i.e. up to point A which, strictly speaking, is situated
below the point of yield) where the strains are assumed to be very small (but
finite). Such materials are also termed strictly linear.

3. Non-Linear Elastic Materials. The stress–strain response is non-linear and
strain may become very large. Such material behaviour can be observed in
biological structures (e.g. human soft tissue, etc.) and in elastomeric mate-
rials (e.g. rubber, foam). In addition, such materials most often exhibit
hysteresis. When hysteresis effects are eliminated (split of elastic and
inelastic properties), the elastic parts (equilibrium elasticity) correspond with
curve #3 (cf. also Chaps. 4 and 5).

• Plastic material behaviour is characterized such that after reaching a stress
limit (yield stress ry), the loading and unloading paths no longer coincide, and
after unloading an existing strain ep remains. Such processes are not reversible,
and these materials are said to exhibit a permanent memory. The following cases
can be distinguished:

Fig. 3.5 Idealized stress–
strain response of different
materials
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4. Linear-Elastic Ideal-Plastic Materials. If a material does not exhibit distinct
hardening behaviour, the stress–strain response can be approximated by a
linear-elastic curve path (curve #2) and an ideal-plastic path (curve #4). Thus,
materials that begin to yield after reaching a certain stress limit can be
approximated.

5. Rigid-Plastic Materials. If the elastic strain is negligibly small compared to
the plastic strain, the material behaviour can be described assuming a rigid-
plastic repose whereby the material behaves as rigid up to a certain stress
limit (curve #1) and then begins to yield (curve #5).

6. Plastic Hardening Materials. Such materials are characterized by permanent
deformation after unloading, and under additional loading cycles, loading
and unloading follow the same linear paths.

• Viscous material behaviour is basically characterized through a time-
dependent deformation at stresses r0\ry; i.e. stresses below the yield stress ry:)
The following three cases can be distinguished:

7. Viscous Materials—Creep (r(t) = r0 = const., e = e(t). If for instance,
plastomers (PVC, PU etc.) as well as biologic structures (e.g. human soft
tissue, hair, etc.) are exposed to a constant load r0, the material begins to
‘yield’. This is known as creep.

8. Viscous Materials––Relaxation (e(t) = e0 = const., r = r(t)). If plastomers
(PVC, PU etc.) or biologic structures (e.g. human soft tissue, hair, etc.) are
exposed to a constant deformation e0; a time-dependent decrease of stress can
be observed. This phenomenon is known as stress relaxation or relaxation.

9. Viscous Materials––Deformation–Relaxation. If plastomers (PVC, PU etc.)
or biologic structures (e.g. human soft tissue, hair, etc.) are exposed to sudden
unloading (rðtÞ ¼ 0), the deformation decreases. This phenomenon is
referred to as deformation–relaxation, backward creep or retardation.

If the stress–strain response initially follows the elastic path 0A (cf. Fig. 3.5)
and then from point A the curve path #7, a combination of elastic and viscous
material behavior exists. Such materials described under 7–9 are referred to as
viscoelastic and are said to exhibit a fading memory.

10. Pseudo-Elastic Materials. Nickel–Titanium alloys (Ni–Ti) show similar
behavior to linear-elastic ideal-plastic materials under loading, except that
at curve point D, a second elastic path is followed. At unloading, from point
E to point F, backward creep takes place. Further unloading leads to the
initial undeformed state, similar to an elastic material. The underlying
processes rely on martensite–austenite transitions which are initiated due to
temperature differences. Materials that exhibit such behaviour are referred
to as Shape-Memory-Alloys and are said to have a memory of the shape at a
specific temperature.

Any combination of the above listed material classes, such as viscoplastic or
viscoelastic behaviour, are possible. Any material may exhibit any of the listed
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behaviours to a greater or lesser extent, depending on the loading situation. One or
the other characteristic may be neglected, depending on measurement accuracy.

Behaviour of Human Soft Tissue and Polymer Soft Foam. The mechanical
behaviour of human soft tissue and of soft polymeric foam (rubberlike) material
exhibit non-linear material behaviour. Biological soft tissue material displays a
J-shaped curve in the stress–strain diagram, whereby at increasing stress the
corresponding strain change decreases, cf. Fig. 3.6. This stress–strain character-
istic applies for soft tissues such as fat or (transversally loaded passive) muscle
tissue (e.g. in the buttock and upper leg region) as well as for arteries. In addition,
the stress–strain behaviour of pathological arterial tissue, such as that encountered
in aneurysms, is characterized by a distinct moderate initial stress increase (almost
horizontal tangent) in the origin. Stress–strain characteristics of soft polymeric
foams and rubberlike materials, in contrast, exhibit S-shaped curves with an
inflection point and plateau where relatively small changes in load result in large
changes in strain., cf. Fig. 3.6. Both materials are discussed in more detail in
Chaps. 4 and 5.

Both stress–strain characteristics in Fig. 3.6 represent the state of equilibrium
elasticity (after relaxation) and can thus generally be classified as non-linear
elastic. The actual material behaviour of such materials however, generally is
viscoelastic and is characterized by hysteresis. The hysteresis slope is formed by
relaxation termination points which mark the corridor in which the equilibrium
material response is located, cf. Chaps. 4 and 5.

3.2.2.2 Time-Dependent Behaviour

To describe the mechanical behavior of many materials, stress–strain character-
istics are not sufficient and further constitutional diagrams must be considered. The
mechanical behavior of polymers at room temperature is strongly time-dependent

Fig. 3.6 Qualitative stress–
strain responses of human
soft tissue and soft polymer
foam
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and thus viscoelastic. The stress–strain curves #7, #8 and #9 illustrate their time-
dependent behavior as shown.

Creep. The stress–strain curve #7 in Fig. 3.5 depicts creep behavior which can
be described in a strain–time diagram, Fig. 3.7, as follows. If the material is exposed
to sudden constant loading r0, at time t ¼ 0 (sudden loading refers to a process that
takes place within a time span where no measurable deformation occurs and the
process is slow enough that inertia forces can be neglected), the strain suddenly
increases (elastic or spontaneous straining) to e0 and then further increases over
time. Depending on the material and the deformation, creep rupture may occur at
point B. Three regions can be distinguished: primary creep, secondary creep and
tertiary creep. An elastic material would rest at point A of the r–e-diagram
(cf. Fig. 3.7) which corresponds to a constant path of e0 (cf. dashed line in Fig. 3.7).

Relaxation. According to the stress–strain curve #8, relaxation can be descri-
bed in the stress–time and strain–time diagram as follows (cf. Fig. 3.7). If the
material is exposed to sudden constant straining e0 at time t ¼ 0, the stress
response suddenly increases to r0 (elastic or spontaneous reaction) and decreases
with increasing time. Depending on the material, the stress may either converge to
a constant value or decrease to zero. An elastic material would respond with a
constant r0 (cf. dashed line in Fig. 3.7).

Retardation. According to the stress–strain curve #9, deformation–relaxation
can be described in the stress–time and strain–time diagram as follows (cf.
Fig. 3.7c). If the constant stress r0 during a creep process at point B at time t0 is
suddenly reduced to zero (in this context, suddenly reduced refers to a process that
takes place within a time span where no measurable deformation occurs and the
process is so slow that inertia forces can be neglected), the deformation is reduced

Fig. 3.7 Time-dependent viscoelastic material behavior (left Creep; right Relaxation)
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over time and may decrease to zero depending on the material. In this process,
a sudden decrease of strain (elastic or spontaneous straining) may occur between
points B and C, and then from point C, the strain decrease may turn into backward
creep, i.e. deformation–relaxation. In the case of missing spontaneous straining,
the strain–time response follows the dashed line in Fig. 3.7c.

In the case of small strains, for instance polymers exhibit viscoelastic material
behaviour shown by duplication of strain with duplication of stress. For finite
strains, this relation is no longer valid.

Isochrone Stress–Strain Curves. The time behavior of viscoelastic materials
may be illustrated in isochrone stress–strain curves (for short: isochrones). These
curves can be determined from creep and relaxation data by plotting the pairs r(t1)
and e(t1), r(t2) and e(t2) etc. at times t1; t2 etc. in an r–e-diagram (cf. Fig. 3.8). The
resulting stress–strain curves are parametric functions of time. Principally, the
gradient of such curves decreases (at a fixed value of e) with increasing time
t1\t2\. . .; which is equivalent to a decrease in strength of viscoelastic material
with increasing time. In general, at small strains, the isochrones can be approxi-
mated as straight lines. In this case linear-viscoelastic material behavior exists and
the stress is proportional to strain.

3.2.3 Kinematics and Strain Tensors

3.2.3.1 One-Dimensional Case

If a body is exposed to an arbitrary external (thermo-mechanical) load, it will
deform. To quantify this deformation, it is convenient to determine the change in
length of the body to derive strain. In the case of a tensile bar which is fixed on one
end and pulled on the other (cf. Fig. 3.9), the change in length Dl of the bar can be
derived from the difference in length l in the current configuration (CCFG) and the
length l0 in the initial configuration (ICFG) by

Fig. 3.8 Isochrone stress–strain diagram: a creep curves as parametric function of stress
r1\r2\r3\. . .. . .; b isochrones t1\t2\t3\. . .. . .

30 3 Fundamentals



Dl ¼ l� l0: ð3:37Þ

Strain is expressed by the ratio of a change in length Dl per unit of the original
or initial length l0. As long as the bar is exposed to homogenous deformation (i.e.
identical deformation at each point of the specimen), the (normal) strain e reads

e : ¼ Dl

l0
¼ l� l0

l0
¼ l

l0
� 1: ð3:38Þ

If the deformation is not homogenous, in general, a different deformation at
every point X of the material is apparent. Considering an (undeformed) line ele-
ment with length dX at the position X in the ICFG and the (deformed) line element
with length dx at the position x in the CCFG, the change in length is obtained using
the displacement uðxÞ of the element at position X (cf. Fig. 3.9) by

du ¼ dx� dX with uðXÞ ¼ x� X: ð3:39Þ

In addition, the local strain or ‘‘engineering strain’’ (note that again, according
to definition (3.38) the ratio of change in length du and initial length dX is
expressed) thus derives to

e ¼ du

dX
¼ dx� dX

dX
� d

dX
ðx� XÞ ¼ dx

dX
� 1: ð3:40Þ

Relations (3.37)–(3.40) are elementary mechanics relations. In continuum
mechanics the strain e, the (current) coordinate x in the CCFG and the displace-
ment coordinate u generally depend on the position X in the ICFG as well as the
time t. More precisely, equation (3.40) thus reads

eðX; tÞ ¼ ouðX; tÞ
oX

¼ oxðX; tÞ
oX

� 1 ð3:41Þ

Fig. 3.9 Change of length
and strain of a tensile bar
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where the partial derivative o=oX is now used since the quantities e, u and x
depend on X and t. Generally, the motion of a continuum body is expressed by the
mapping function v through

x ¼ vðX; tÞ ð3:42Þ

where v is referred to as motion. The motion links both configurations (ICFG and
CCFG), thus establishing a definite relation between x and X at each point in time t
in terms of deformation processes (tension, pressure, shear etc.) acting on the
body. In case of a tensile bar, the relation is given as follows (cf. Fig. 3.9)

x ¼ vðX; tÞ ¼ X þ uðX; tÞ: ð3:43Þ

It is common use to denote X the material or LAGRANGIAN coordinate and x the
spatial or EULERIAN coordinate. Both differential quotients in (3.41)

FðX; tÞ :¼ ox

oX
� ovðX; tÞ

oX
and HðX; tÞ :¼ ouðX; tÞ

oX
ð3:44Þ

are denoted as deformation gradient F and displacement gradient H. Equa-
tions (3.41) may thus be expressed by

e ¼ H ¼ F � 1 and F ¼ 1þ H ð3:45Þ

In continuum mechanics, F plays a central role and constitutes a building block
to generate appropriate deformation measures.

Note: According to (3.45), the ‘‘engineering strain’’ e is equal to the displace-
ment gradient H and thus is a linear function of H: Hence, it is referred to as linear
strain.

Some important terms of one dimensional continuum mechanics have hence
been introduced, using the example of a tensile bar. Based upon on this intro-
duction, a transfer can be made to three dimensional continuum mechanics. It is to
note that using the knowledge of (3.42) to (3.44) the result (3.40) deduced from
Fig. 3.9 could also have been derived by substituting (3.43) in (3.44)1 i.e. without
visual help which however, represents a more comprehensible approach. To
establish more complex relations, the latter approach however, is more advisable
due to lack of visual perception. In addition, the three dimensional formulations
are most comfortably established using vector and tensor analysis.

3.2.3.2 Continuum and Body

In continuum mechanics a (biological) body is perceived as a continuous mass
rather than as a conglomeration of atomic particles. Such a body is also called a
point continuum (see Fig. 3.10), where X stands for any material point. One
envisions a material point as an infinitesimally large volume element dV with an
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infinitesimally small mass dm, which may contain any number of atoms, molecules
or cells. Essential for applying continuum mechanics to biological systems
is that for every point X of the body at time t the (always positive) density
qðX; tÞ ¼ dm=dV [ 0 can be defined (Fung 1993).

3.2.3.3 Configuration and Motion

Kinematics, which deals with the geometric and analytical description of move-
ment by material bodies, is applied to assess and quantify deformation of a body,
whereby possible causes (force, stress) are disregarded. Practically, two different
positions or configurations of a body are observed: the reference or initial con-
figuration (ICFG) is the initial unchanged position of the body at time t0 and the
current configuration (CCFG) which shows the body in its changed momentary
state at any time t (see Fig. 3.11a). Every material point X (or volume element dV0

or dV) of the body is then assigned in its ICFG location vector X and in the CCFG
location vector x. Displaying both

X ¼ Xiei and x ¼ xiei ð3:46Þ

in a cartesian orthogonal basis system ei (in the following shortened to OBS), Xi

represents the material and xi the spatial coordinate. The location vectors, x and X,
together surmount the vector function v according to

Fig. 3.10 The concept of
body, continuum and material
point shown by the example
of a bone–muscle–fat tissue
composite in a human thigh
(based on MRI-slices with
3D-reconstruction)
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x ¼ vðX; tÞ ð3:47Þ

whereby through v a concrete deformation process (for example: pull, pressure,
shear strain, bending) for every material point X of the body K is represented. For
another material point Y with the location vector Y in the ICFG and y in the CCFG
the relation is represented by: y ¼ vðY; tÞ.

Using (3.47), for every time point t, the current location x of the material point
X, which was previously in the location X in the ICFG, is clearly specified.
Continuous transient mappings v of all material body points X of body K are
called motion of the body (see dotted momentary locations of the body in
Fig. 3.12). Successive imaging of a single point X is termed trajectory
(or ‘‘Destiny’’) of X (see Fig. 3.12). If t ¼ t0 in (3.47), motion according to
vðX; t0Þ ¼ X is transformed into the location X of the particle X in the ICFG
(see Fig. 3.11a).

Fig. 3.11 a Initial (ICFG)
and current (CCFG)
configuration of a material
body, b displacement field of
a material body
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3.2.3.4 Displacement Field

During the transformation of a body from ICFG into CCFG every material point X
is displaced, which through the displacement vector u

u ¼ x� X or uðX; tÞ ¼ vðX; tÞ � vðX; t0Þ ð3:48Þ

is represented in the form of (vectorial) differences of both position vectors x and
X. The entire displacement vectors of a body are termed the displacement field
(see Fig. 3.11b).

3.2.3.5 Deformation and Displacement Gradient

Deformation Gradient. The spatial derivation of motion x ¼ vðX; tÞ plays a
central role in continuum mechanics. The deformation gradient F is generated
through formal differentiation of (3.47) with respect to X and constitutes the most
important ‘‘building block’’ of continuum mechanics. A more precise term may be
configuration gradient, since the change or gradient between configurations ICFG
and CCFG is described.

FðX; tÞ :¼ ox

oX
¼ ovðX; tÞ

oX
�! xr: ð3:49Þ

In (3.49), the formal partial differentiation o=oX is to be performed with the
help of the concrete gradient operation ð
Þr with the (material) NABLA-operator r
represented e.g. in an OBS. Its representation (note that in (3.49), the differenti-
ation is made with respect to the material position vector X and to the material
coordinates Xi, respectively) is given by

r :¼ o

oXi
ei: ð3:50Þ

Note: The NABLA symbol arose from similar symbols used in the Quaterion-
analysis of William Rowan Hamilton. Peter Guthrie Tait introduced the symbol in

Fig. 3.12 Movement of a
material body and trajectory
or path of a material point X
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its current form as an inverted delta r. The name NABLA refers to William
Robertson Smith (1846–1894), a physicist and theologian, who was reminded of
an ancient harp (hebr. nével, gr. ma9bka nábla, lat. nablium) by the reversed delta
shape.

Since in (3.49) a vector (x) and a (vector-valued) vector function (v), are
differentiated, a tensor (of second order) (F) is generated and a dyadic product
(xr), where the order of both vectors, x and r, must not be changed (F is not a
symmetric tensor and is referred to as bi-vector or two-field-tensor). Obeying
(3.46), (3.49) and (3.50), F can be represented with respect to an OBS (following
the Einstein convention where the repetition of an index in a term denotes a
summation with respect to that index over its range, such that nine coordinates of
F are generated):

F ¼ Fijeiej ¼
oxi

oXj
eiej

¼ F11e1e1 þ F12e1e2 þ F13e1e3 þ F21e2e1 þ F22e2e2 þ F23e2e3 þ F31e3e1 þ F32e3e2 þ F33e3e3

¼ ox1

oX1
e1e1 þ

ox1

oX2
e1e2 þ

ox1

oX3
e1e3 þ

ox2

oX1
e2e1 þ

ox2

oX2
e2e2 þ

ox2

oX3
e2e3 þ

ox3

oX1
e3e1 þ

ox3

oX2
e3e2 þ

ox3

oX3
e3e3

ð3:51Þ

In matrix notation (3.51) takes the following form

½F� ¼
F11 F12 F13

F21 F22 F23

F31 F32 F33

2

4

3

5heieji ¼
ox1=oX1 ox1=oX2 ox1=oX3

ox2=oX1 ox2=oX2 ox2=oX3

ox3=oX1 ox3=oX2 ox3=oX3

2

4

3

5heieji:

ð3:52Þ

Three important properties of the deformation gradient. The abstract def-
inition of the deformation gradient (3.49) requires clarification. Using the total
differential of motion x (3.47), at a fixed point in time t (analogue to scalar-valued
functions), the following term dx ¼ d½vðX; tÞ� ¼ ðov=oXÞ � dX is obtained, and
together with (3.49), it follows

dx ¼ F � dX � ðxrÞ � dX: ð3:53Þ

Imaging such that the directional line elements dx and dX represent an edge
length of a volume element in the ICFG and CCFG, respectively (cf. Fig. 3.13),
the deformation gradient F maps the line element dX from the ICFG into the line
element dx in the CCFG (transformation of line elements).

With the (directional) areas elements dA0 ¼ dA0n0 and dA ¼ dAn in the ICFG
and CCFG, respectively, with the area normal vectors n0 and n orthogonal to the
areas dA0 and dA, respectively (cf. Fig. 3.13), it follows (without proof):

dA ¼ ðCofFÞ � dA0 with J ¼ det F and CofF :¼ JF�T : ð3:54Þ

In (3.54), CofF � ðadjFÞT is referred to as area configuration tensor or
cofactor tensor (the transpose operation ‘‘adj’’ adjugate of the tensor F is
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sometimes preferred) which provides a linear transformation between the directed
area elements dA0 and dA in the ICFG and CCFG (transformation of area ele-
ments). The term J ¼ det F is referred to as JACOBI determinant which is obtained
by forming the determinant of matrix (3.52).

Furthermore, regarding the volume elements dV0 and dV in the ICFG and
CCFG (cf. Fig. 3.13) transformation (of volume elements), yields (without proof)

dV ¼ JdV0 with J ¼ det F: ð3:55Þ

Remarks: Since dV and dV0 are always positive, it follows from (3.55) that the
determinant of F is always positive, namely J ¼ det F [ 0: Motions where J ¼ 1
lead according to (3.55) to dV ¼ dV0 and are referred to as volume preservative or
isochore.

Displacement Gradient. With respect to linearization of strain tensors (see
Sect. 3.2.3.6), it is necessary to introduce the material displacement gradient H
given as follows

HðX; tÞ :¼ uðX; tÞr: ð3:56Þ

The relationship between the deformation gradient and the displacement gra-
dient is established by substituting (3.48) in (3.49) which leads to F ¼ xr ¼
ðuþ XÞr ¼ urþ Xr: With respect to Cartesian coordinates (3.46) and (3.50),
the second term of the right side reads Xr ¼ ðXieiÞðo=oXjejÞ ¼ oXi=oXjeiej ¼
dijeiej ¼ eiei ¼ I; i.e. the identity tensor I (the same can also be deduced vecto-
rially using the operation Xr ¼ Xðo=oXÞ ¼ oX=oX ¼ I where the partial deri-
vation of X with respect to X yields the ‘‘tensorial one’’). Together with (3.56) it
follows (compare with the one-dimensional form (3.45))

F ¼ I þH or xr ¼ I þ ur: ð3:57Þ

Analogue to (3.51), the representation of H with respect to a OBS reads

H ¼ Hijeiej ¼
oui

oxj
eiej: ð3:58Þ

Fig. 3.13 On the
transformation of line-, area-
and volume elements
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Polar Decomposition Theorem. According to (3.49), the deformation gradient
does not contain any translational parts but only rotational parts of the motion.
This can be seen as follows: two motions x1 and x2 ¼ x1 þ cðtÞ that differ only by
a (time-dependent) translation cðtÞ have equal deformation gradients F1 and F2

since due to spatial independence of cðtÞ the term cðtÞr vanishes:
F2 � x2r ¼ ½x1 þ cðtÞ�r ¼ x1rþ cðtÞr ¼ x1r � F1:

The rotational parts of the motion become apparent by polar decomposition

F ¼ R � U ¼ V � R: ð3:59Þ

where F may be decomposed uniquely into a right and a left stretch tensor U and
V, respectively, and a rotation tensor (or versor) R where U and V are symmetric
and positive definite tensors (x 6¼ 0 is an arbitrary vector)

U ¼ UT ; V ¼ VT and x � U � x [ 0; x � V � x [ 0: ð3:60Þ

Using U and V the configurational change of line-, area- and volume elements
etc. at unrotated principal directions may be described, i.e. only the extensions (or
compressions) of the particular object are described (cf. Fig. 3.14). Tensor R is an
orthogonal tensor with

R � RT ¼ RT � R ¼ I and RT ¼ R�1 with det R ¼ þ1: ð3:61Þ

where R denotes a rigid body rotation of the principal directions (cf. Fig. 3.14).
In general, tensor R changes at every continuum point and describes the rigid
rotation of a material line element (and the principal axis frame) but not the

Fig. 3.14 Application of the
polar decomposition theorem
on a sphere
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global rotation of the body! Furthermore, F must be invertible such that J ¼
det F 6¼ 0 is fulfilled.

3.2.3.6 Strain Tensors

Following one-dimensional application (see Sect. 3.2.3.1), strain measure gener-
ally results from a change in length. If a body is not a simple rod shape, but an
arbitrary three-dimensional shape, this kind of utilization can principally be
applied. Thus, it is reasonable to determine the change in length of the (three)
edges of a volume element dV . Since the volume element is spatially oriented it is
advantageous to assign the edge length dX to the (vectorial) line element dX in the
ICFG and dx in the CCFG. Furthermore, it is advantageous to determine the
modulus or the square (norm) of a vectorial line element dx and dX, respectively.
Using the mapping property (3.53) and the equality of a vector with its transpo-
sition (for arbitrary vectors a it applies that a ¼ aT and thus

dx ¼ F � dX ¼ dxT ¼ ðF � dXÞT ¼ dXT � FT ¼ dX � FTÞ

the squares of dx and dX are obtained

ðdxÞ2 ¼ dx � dx ¼ ðF � dXÞ � ðF � dXÞ ¼ dX � ðFT � FÞ
|fflfflfflffl{zfflfflfflffl}

C

�dX

ðdXÞ2 ¼ dX � dX ¼ ðF�1 � dxÞ � ðF�1 � dxÞ ¼ ðdx � F�TÞðF�1 � dxÞ ¼ dx � ðF � FT
|fflffl{zfflffl}

B

Þ�1 � dx

ð3:62Þ

and thus

ðdxÞ2 ¼ dx � dx ¼ dX � C � dX; ðdXÞ2 ¼ dX � dX ¼ dx � B�1 � dx ð3:63Þ

where C and B are referred to as (note for further identical representations in
(3.63) the relation (3.57)) right and left CAUCHY-strain tensor

C :¼ FT � F
¼ ðI þHÞT � ðI þHÞ � I þH þHT þHT �H
� I þ urþruþ ðruÞ � ðurÞ

B :¼ F � FT

¼ ðI þHÞ � ðI þHÞT � I þH þHT þH �HT � I þ urþruþ ðurÞ � ðruÞ
ð3:64Þ

and since both tensors are symmetrical, it follows
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CT ¼ ðFT � FÞT ¼ FT � FTT ¼ FT � F ¼ C

BT ¼ ðF � FTÞT ¼ FTT � FT ¼ F � FT ¼ B
ð3:65Þ

Remarks: Following (3.53), (3.63) may be interpreted as C being the square of
the line element dX (from the ICFG), mapped into the square of dx in the CCFG.
For B�1 the reverse applies. The difference of (3.65) and (3.45) is that the former
represent nonlinear strain measures due to the terms HT �H and H �HT ,
respectively.

Taking (3.59) and (3.60) into account, the following relations between C and
U and B and V, respectively, yield:

C ¼ FT � F ¼ ðR � UÞT � ðR � UÞ ¼ ðUT � RTÞ � ðR � UÞ ¼ U � RT � R
|fflffl{zfflffl}

I

�U ¼ U � U ¼ U2

B ¼ F � FT ¼ ðV � RÞ � ðV � RÞT ¼ ðV � RÞ � ðRT � VTÞ ¼ V � R � RT
|fflffl{zfflffl}

I

�V ¼ V � V ¼ V2

ð3:66Þ

As applicable to the one dimensional case, change in length is used to quantify
strain. One kind of length change arises employing (3.63)1 and (3.64)1 by calcu-
lating the difference of the squares of the line elements dx and dX by (note for
arbitrary vectors the identity v ¼ v � I holds)

ðdxÞ2 � ðdXÞ2 ¼ dX � C � dX � dX � dX ¼ dX � C � dX � dX � I � dX

¼ dX � ðC � IÞ
|fflfflfflffl{zfflfflfflffl}

2G

�dX ð3:67Þ

and thus

ðdxÞ2 � ðdXÞ2 ¼ dX � 2G � dX ð3:68Þ

where considering (3.64)1, the abbreviation (G is symmetric!)

G :¼ 1
2
ðC � IÞ ¼ 1

2
ðH þHT þHT �HÞ � 1

2
½urþruþ ðruÞ � ðurÞ� ¼ GT

ð3:69Þ

is referred to as the right GREEN or GREEN–LANGRANGE-strain tensor. Due to the
symmetry of C and I, the right GREEN-strain tensor is also symmetric. To clarify
the composition of the right GREEN-strain tensor, in the following G is represented
with respect to an OBS following (3.69): analogue to (3.51), one obtains obeying
(3.58)

G ¼ Gijeiej ¼
1
2

oui

oXj
þ ouj

oXi

� �

þ 1
2
ouk

oXi

ouk

oXj

� �

eiej ð3:70Þ

40 3 Fundamentals



and in matrix notation, respectively

G½ � ¼
G11 G12 G13

G12 G22 G23

G13 G23 G33

2

4

3

5heieji ð3:71Þ

with six independent coordinates

G11 ¼
ou1

oX1
þ 1

2
ou1

oX1

� �2

þ ou2

oX1

� �2

þ ou3

oX1

� �2
" #

G22 ¼
ou2

oX2
þ 1

2
ou1

oX2

� �2

þ ou2

oX2

� �2

þ ou3

oX2

� �2
" #

G33 ¼
ou3

oX3
þ 1

2
ou1

oX3

� �2

þ ou2

oX3

� �2

þ ou3

oX3

� �2
" #

ð3:72Þ

G12 ¼ G21 ¼
1
2

ou1

oX2
þ ou2

oX1

� �

þ 1
2

ou1

oX1

ou1

oX2
þ ou2

oX1

ou2

oX2
þ ou3

oX1

ou3

oX2

� �

G13 ¼ G31 ¼
1
2

ou1

oX3
þ ou3

oX1

� �

þ 1
2

ou1

oX1

ou1

oX3
þ ou2

oX1

ou2

oX3
þ ou3

oX1

ou3

oX3

� �

G23 ¼ G32 ¼
1
2

ou2

oX3
þ ou3

oX2

� �

þ 1
2

ou1

oX2

ou1

oX3
þ ou2

oX2

ou2

oX3
þ ou3

oX2

ou3

oX3

� �

:

ð3:73Þ

Analogue to tensor representation (3.69), it can be seen using (3.72) and (3.73)
that the elements of the principal diagonal Gii of G are dependent on the squares of

the displacement derivations, i.e. ðou1=oX1Þ2 and so on, and the elements of the
secondary diagonal Gij are dependent on the bilinear terms of the displacement
derivations, i.e. ðou1=oX1Þðou1=oX2Þ and so on.

Rigid Body Motion. Under the motion of a rigid body, the displacement vectors
of all material points are equal due to uðX; tÞ ¼ u0. They are no longer position
dependent (cf. Fig. 3.8b). According to (3.56), the displacement gradient vanishes
due to H ¼ u0r ¼ 0: Using (3.57) this yields the deformation gradient to be

F ¼ I: ð3:74Þ

Using (3.74) together with (3.65) and (3.69), the strain tensors yield

C ¼ B ¼ I and G ¼ 0 ð3:75Þ

where, in the case of no deformation (rigid body motion), only the GREEN-strain
tensor transforms into the zero tensor, and thus represents a ‘‘true’’ strain measure.
Furthermore, according to (3.70), (3.53) and (3.55) it remains dx ¼ dX and
dV ¼ dV0, which leads to constant edge lengths of a volume element and the
volume element itself remains unchanged in case of a rigid body motion. The body
thus does not experience any deformation.
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Geometrical Linearized Strain Measures. The previously introduced strain
tensors are valid for arbitrary large strains (rotation and shear strain). Many
technical problems, however, include only small strain or this strain must be kept
small due to material safety reasons. In such a case, the introduced strain measure
can be simplified by means of geometrical linearization. The strain tensors rep-
resented as functions of the displacement gradient (3.64) and (3.69), contain
non-linear products of the form ðruÞ � ðurÞ and ðurÞ � ðruÞ respectively,
regarding the displacement gradient. In case of the displacement gradients ur and
ru being small, their products are even smaller, such that the latter can be
neglected compared to the former. Thus, the linearized versions of the right
CAUCHY and GREEN-strain tensor read:

linC ¼ linB ¼ I þH þHT ¼ I þ urþru ¼ I þ 2E

linG ¼ 1
2
ðH þHTÞ ¼ 1

2
ðurþruÞ ¼ E:

ð3:76Þ

In (3.76) the term (E is symmetric!)

E :¼ 1
2
ðH þHTÞ ¼ 1

2
ðurþruÞ � 1

2
ðFþ FT � 2IÞ ¼ ET ð3:77Þ

is referred to as deformator or infinitesimal strain tensor. Note that in (3.77) H has
been replaced according to (3.56). With regard to an OBS, E takes the following
form

E ¼ eijeiej ¼
1
2

oui

oXj
þ ouj

oXi

� �

eiej ð3:78Þ

or in matrix notation

½E� ¼
e11 e12 e13

e12 e22 e23

e13 e23 e33

2

4

3

5heieji ð3:79Þ

with the six coordinates that read as follows

e11 ¼
ou1

oX1
; e22 ¼ ou2

oX2
; e33 ¼ ou3

oX3

e12 ¼ e21 ¼
1
2

ou1

oX2
þ ou2

oX1

� �

; e13 ¼ e31 ¼
1
2

ou1

oX3
þ ou3

oX1

� �

e23 ¼ e32 ¼
1
2

ou3

oX2
þ ou2

oX3

� �

ð3:80Þ

In (3.79) and (3.80) the elements of the principal diagonal eii are referred to as
strain and represent the relative extensions and contraction respectively (eii [ 0
and eii\0), of the edges of the volume elements under a transition from the ICFG
to the CCFG at small displacement derivations. The elements of the secondary
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diagonal eij (i = j) are referred to as shearing strain and represent the deviation
from a right angle of two line elements under a transition from the ICFG to the
CCFG at small displacement derivations.

By comparing (3.78) with (3.70) and (3.80) with (3.72) and (3.73), it can be
seen that the coordinates of E emerge from the coordinates of G by cancelling the
quadratic and bilinear terms of the displacement gradient (cancelation of the
squared bracket terms in (3.72) and the respective parenthesis terms in (3.73)).

3.2.4 Stress

3.2.4.1 One-Dimensional Case

Considering a (one-dimensional) bar fixed at the left end and loaded at its right end
with the force K (see Fig. 3.9), generally two definitions of stress are possible,
assuming a constant stress distribution over the cross section area: (a) referring the
(longitudinal) force K to the cross section area A0 in the ICFG (Fig. 3.15), the
nominal or first PIOLA–KIRCHHOFF-stress definition results

PI ¼ K

A0
: ð3:81Þ

This stress definition for example, is used in conjunction with laboratory tensile
testing. If however, the (longitudinal) force K is referred to the current cross
sectional area A in the CCFG, the true or CAUCHY-stress definition results

r ¼ K

A
: ð3:82Þ

In Fig. 3.15, qualitative stress stress–strain-curves referring to PI and r are
depicted where, due to increasing strain, the decreasing cross section area A results
in increasing r compared to PI :

Comparison of (3.81) and (3.82) leads to the relation

Fig. 3.15 On the definition
of stress measures: nominal
stress PI and true stress r
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PI ¼ K

A0
� A

A

K

A0
� A

A0

K

A
|{z}

r

¼ A

A0
r ð3:83Þ

which however, is no longer valid in the three-dimensional case, cf. (3.96). Var-
ious other stress measures exist which only make sense in the three-dimensional
case. In conclusion, in the one-dimensional case where the stress distribution
across the (bar) section is not constant, the (longitudinal) stress PI and r and the
(tensile) force K are related by

K ¼
Z

A0

PIdA0 ¼
Z

A

rdA ð3:84Þ

where generally, the force K is the integral of the stresses acting at the area
element dA0 and dA, respectively, and the rule ‘‘stress equals force divided by
area’’ no longer holds true. From (3.84) the expressions (3.81) and (3.82) for
constant stress distribution are implied. The previous guidelines can then be
expanded to the three-dimensional case.

3.2.4.2 Stress State and Stress Vectors

Inside a body (mechanical device, human body) subjected to external load (forces,
moments, distributed loads) interparticle contact stress results which can be made
‘visible’ and mathematically accessible by means of the EULER cut principle.

If, for example, a body is loaded by a gravity force G and a contact force K and
supported by bearings with bearing reaction forces L1 and L2 and, the body is cut
into two pieces at any arbitrary point, cf. Fig. 3.16a, distributed area forces in
terms of stress vectors t must be assigned in the cutting plane A (at both of the
resulting body parts K1 and K2––the latter is not depicted in Fig. 3.16a). Fur-
thermore, by division into two separate bodies, the gravity force G is divided into
G1 and G2. The stress vectors act upon the current area element dA (in the CCFG)
and are referred to as true or CAUCHY stress. Under formal aspects and beneficial
for later guidelines, a stress vector t0 can be defined which relates to an area
element dA0 in the ICFG and is referred to as nominal or first PIOLA–KIRCHHOFF

stress. Both stress vectors differ in every point of the area in magnitude, direction
and sense and thus create an irregular ‘stress topology’ over area A and A0.

Integration of all stress vectors t0 and t, acting upon dA0 and dA, respectively,
yields the resulting section force KS, cf. Fig. 3.16b and c.

KS ¼
Z

A0

t0dA0 ¼
Z

A

tdA: ð3:85Þ
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The stress vectors t0 and t, may in addition be, a function of position X, the
direction of the corresponding area element n0 and n, respectively, and the time
t such that

t0 ¼ t0ðX; t; n0Þ; t ¼ tðX; t; nÞ: ð3:86Þ

The normal vectors n0 and n, are defined such that they are perpendicular to the
corresponding area element dA0 and dA, respectively, and point outwards,
cf. Fig. 3.16. Cutting a volume element dV with edge length dx1, dx2, dx3 from a
body in the CCFG, cf. Fig. 3.16, leads to six orthogonal (infinitesimal) cutting
planes with normal vectors n1, n2 and n3, as well as a (CAUCHY) stress vector t1, t2
and t3 respectively, assigned to each plane, cf. Fig. 3.17a. Here, for clarity, only
the planes with positive normal vectors are depicted.

The stress vectors ti (i = 1, 2, 3) can be divided into three components with the
coordinates ri1, ri2 and ri3 (i = 1, 2, 3) with respect to the OBS e1, e2, e3

(illustrated in Fig. 3.17b using the example of t1) to

Fig. 3.16 On the definition of stress: a loaded body in the CCFG, b body with section cut in the
CCFG and reaction stress vectors in the cut area A and c related area elements in the ICFG and
CCFG
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t1 ¼ r11e1 þ r12e2 þ r13e3 ¼ r1jej

t2 ¼ r21e1 þ r22e2 þ r23e3 ¼ r2jej

t3 ¼ r31e1 þ r32e2 þ r33e3 ¼ r3jej

ð3:87Þ

or for short

ti ¼ rijej i ¼ 1; 2; 3ð Þ: ð3:88Þ

Due to the three different stress vectors ti nine coordinates rij, namely r11, r12,
r13–r33, exist which (inevitably) must be denoted with a double index. The first
index refers to the direction of the normal vector of the corresponding area element
and the second index refers to the direction of the (stress) coordinate. The stress
coordinates with equal indices rii (i = 1, 2, 3) are referred to as normal or direct
stress and, stress coordinates with mixed indices rij (i = j) are referred to as
tangential or shear stress. The stress vectors on the opposite cutting planes of the
volume element, i.e. diametric to the stress vectors ti depicted in Fig. 3.17b can be
derived from (3.87) by their increase via TAYLOR series expansion; they, however,
do not contribute any further information to the general stress state.

3.2.4.3 Stress Tensors

The introduction of a stress tensor is motivated by the following: according to
(3.87), the three stress vectors ti are constituted by nine stress coordinates rij which
fully describe the stress state in a material point (volume element). A mathematical
object is now sought which ‘‘economically’’ combines the nine coordinates rij into
one single object, such that using appropriate algebraic operations, the three
vectors ti result. Since the strain kinematics were organized by (second order)
tensors (cf. Sect. 3.2.3.6), it is obvious to again use an appropriate (second order)
tensor definition. The CAUCHY stress tensor S thus is defined by

Fig. 3.17 Stress vectors acting on the volume element: a volume element cut from a body at any
arbitrary point of cutting plane A with the corresponding reaction measures in the form of CAUCHY

stress vectors and, b stress coordinates at the positive cutting planes of the volume element
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S ¼ rijeiej ¼ r11e1e1 þ r12e1e2 þ r13e1e3

þ r21e2e1 þ r22e2e2 þ r23e2e3

þ r31e3e1 þ r32e3e2 þ r33e3e3

or ½S� ¼
r11 r12 r13

r21 r22 r23

r31 r32 r33

2

6

4

3

7

5

heieii:

ð3:89Þ

In (3.89), eiej are the basis dyads and the rij are the nine stress coordinates
defined previously in (3.87). According to (3.89)2, the (three) normal stress
components r11, r22 and r33 are arranged on the principal diagonal and the (six)
shear stress components r12, r13–r32 are arranged on the secondary diagonals.

CAUCHY’S Lemma. Comparing the right-hand side of (3.87) with the expression
in (3.89)1 shows visual agreement of the structural arrangement of the stress
coordinates r11, r12 etc. Furthermore, it can be seen that after identical transfor-
mation of the first term in (3.89)1 and comparison with (3.88) the following
relation yields

S ¼ rijeiej � ei ðrijejÞ
|fflffl{zfflffl}

ti

¼ eiti ð3:90Þ

The right-hand side (underlined) of (3.90) represents a ‘‘dyadic left multipli-
cation’’ of ti with ei. Left scalar multiplication of both underlined terms in (3.90)
with ek yields the following k-th stress vector tk

ek � S ¼ ðtieiÞ � ek ¼ ðek � eiÞ
|fflfflffl{zfflfflffl}

dki

ti ¼ dkiti ¼ tk: ð3:91Þ

Due to ek ¼ nk (k = 1, 2, 3) (see Fig. 3.18) and using (3.86), the underlined
term in (3.91) can be expressed as

tk X; t; nkð Þ ¼ nk � S X; tð Þ k ¼ 1; 2; 3ð Þ ð3:92Þ

Fig. 3.18 On CAUCHY’s
lemma
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According to (3.92), each stress vector tk in (3.87) is yielded by left scalar
multiplication of the CAUCHY stress tensor S with the corresponding indexed normal
vector nk (this can be shown instantaneously by scalar multiplication of S with
ek ¼ nk according to (3.89)1. The stress state at a (material) point X is thus defined
by either the three stress vectors tk or the six stress coordinates rij of S. This can be
generalized for any arbitrary cutting plane dA with normal vector n which may also
be situated on the surface area (boundary) of the body (cf. Fig. 3.18). This leads to
CAUCHY’s lemma

tnðX; t; nÞ ¼ n � SðX; tÞ ð3:93Þ

whereby the stress vector tn of area element dA is given by scalar multiplication of the
normal vector n with the stress tensor S (S maps n onto tn). According to (3.93) the
stress vector tn is a linear function of the normal vector n, whereas S is independent of n.

Note: Some prefer right scalar multiplication of n in (3.92) and (3.93), which
however, entails that in (3.87) et seqq. the first index of the stress coordinates rij

denotes the direction of the stress vector and the second index denotes the
direction of the normal vector of the area element!

First and Second PIOLA–KIRCHHOFF Stress Tensor. If PI is referred to as the
first PIOLA–KIRCHHOFF stress tensor and t0n is the stress vector corresponding to area
element dA0 in the ICFG, analogue to (3.93) the following CAUCHY lemma applies

t0nðX; t; n0Þ ¼ n0 � PIðX; tÞ ð3:94Þ

A correlation between PI and S can thus be established as follows: substitution
of (3.93) and (3.94) in (3.85) using (3.54) and a � T ¼ TT � a (for arbitrary vectors
a and tensors T) and the symmetry of S regarding (3.128) leads to

Z

A0

t0ndA0 ¼
Z

A0

n0 � PIdA0 �
Z

A0

PIT � ðdA0n0Þ
|fflfflfflffl{zfflfflfflffl}

dA0

�
Z

A0

PIT � dA0¼
!
Z

A

tndA

�
Z

A

n � SdA �
Z

A

ST � ðdAnÞ
|fflffl{zfflffl}

dA

�
Z

A

S � dA �
Z

A0

JS � F�T � dA0

ð3:95Þ

Comparison of the underlined integrands in (3.95) for arbitrarily directed area
elements dA0 leads, after transposition of both sides to a correlation of the first
PIOLA–KIRCHHOFF stress tensor and the CAUCHY stress tensor as follows

PI ¼ JF�1 � S � ðCofFÞT � S and S ¼ J�1F � PI ; respectively: ð3:96Þ

Note: Some specify the first PIOLA–KIRCHHOFF stress tensor by the transposition
of (3.96). This is a result of the differently defined lemma of CAUCHY (cf. the note
after (3.93)).
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It is to note that even though S is symmetric (according to (3.128)), PI in
general, is not symmetric since

PIT ¼ ½JF�1 � S�T ¼ JðF�1 � SÞT ¼ JST � F�T ¼ JS � F�T 6¼ PI : ð3:97Þ

Furthermore, the second PIOLA–KIRCHHOFF stress tensor which is symmetric and is
obtained and is related to PI and S (via pull-back operation F�1 � ð
Þ � F�T ) yields

PII ¼ JF�1 � S � F�T ¼ PI � F�T � ðCofFÞT � S � F�T

¼ F�1 � S � ðCofFÞ ¼ J�1PI � ðCofFÞ:
ð3:98Þ

The latter tensor strictly speaking, is a pseudo stress measure which has no
physical meaning. It however, represents an important stress measure, especially in
the context of finite element methods. The KIRCHHOFF stress tensor s which is used
in various applications is introduced in the following. It is related to the stress
tensors introduced previously. In (3.99)1 the term F � ð
Þ � FT is referred to as
push-forward operation)

s ¼ F � PII � FT ¼ JS respectively PII ¼ F�1 � s � F�T ¼ JF�1 � S � F�T :

ð3:99Þ

3.2.4.4 Principle Stresses (Eigen-Value Problem)

To show constitutive equations as a function of eigen-values (spectral form) in the
following, the eigen-value problem is demonstrated using the example of the stress
tensor. The method is applicable for arbitrary (second order) tensors.

The stress measures (stress coordinates change in magnitude and direction in
every (material) point of a loaded body. To exclude structural failure of a body due
to high mechanical stress, the stress limits must be known. According to (3.89) the
general state of stress at a point is given by three direct and three shear stress
coordinates, i.e. rii and rij (i = j). By specifically rotating the coordinate system
on which the rij are projected, a stress state can be found where the shear stress
vanishes and the remaining direct stress components have their maximum
(extreme) value, cf. Fig. 3.19. This process is referred to as principal axis trans-
formation and the direct stress is referred to as principal stress.

The stress tensor S can be formulated in diagonal form equivalent to (3.89),
containing only the principal stress components (state of principal stress). Hence,
the following relation applies (note that on the right-hand side of (3.100) the
capital sigma notation must be used since more that two equal indices occur)

S ¼ rijeiej¼
!
X

3

i¼1

rHinHinHi ð3:100Þ
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and in matrix notation,

½S� ¼
r11 r12 r13

r12 r22 r23

r13 r23 r33

2

4

3

5heieii ¼
rH1 0 0
0 rH2 0
0 0 rH3

2

4

3

5hnHinHii: ð3:101Þ

In (3.100) and (3.101) the rHi are the principal direct stress components
(eigen-values) and the nHi are the corresponding (orthonormal) principal directions
(eigen-directions). Scalar (e.g. right) multiplication of (3.100) with nHk using nHi �
nHk ¼ dik yields (note that it must not be summed over k on the right-hand side)

S � nHk ¼
X

3

i¼1

rHinHinHi

 !

� nHk ¼
X

3

i¼1

rHi ðnHi � nHjÞ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

dik

nHk ¼ rHknHk

thus the eigen-value problem results in

S � nHj ¼ rHjnHj j ¼ 1; 2; 3ð Þ ð3:102Þ

where (direction) vectors nHj are sought which are mapped by the operator S into a
multiple of rHjnHj. Using (3.102), the identical transformation S � nHj � rHjnHj �
S � nHj � rHjI � nHj ¼ 0 holds, where the following algebraic, homogenous linear
system of equations for the three eigen-vectors nHj is obtained

S� rHjI
� 	

� nHj ¼ 0 j ¼ 1; 2; 3ð Þ ð3:103Þ

or in full (whereas the niHj (i = 1, 2, 3; j = 1, 2, 3) are the respective coordinates
of the three eigen-vectors nHj with respect to a OBS)

Fig. 3.19 Transformation of the principal axis of the tress tensor

50 3 Fundamentals



r11 � rHj

� 	

n1Hj þ r12n2Hj þ r13n3Hj ¼ 0
r12n1Hj þ r22 � rHj

� 	

n2Hj þ r23n3Hj ¼ 0 j ¼ 1; 2; 3ð Þ
r13n1Hj þ r23n2Hj þ r33 � rHj

� 	

n3Hj ¼ 0

ð3:104Þ

According to linear algebra, the homogenous system of equations (3.103) has a
nontrivial solution nHj 6¼ 0; if, using

detðS� rHjIÞ ¼
r11 � rHj r12 r13

r12 r22 � rHj r23

r13 r23 r33 � rHj





































¼! 0 ð3:105Þ

the coefficient determinant of the system of equations vanishes (solvability con-
dition). Execution of operation (3.105) leads to the following characteristic
polynomial in the form of a cubic equation for the eigen-values rHj

PðrHjÞ ¼ detðS� rHjIÞ ¼ r3
Hj � SIr

2
Hj þ SIIrHj � SIII ¼ 0: ð3:106Þ

In (3.106), the Si (i = I, II, III) are the three basic invariants of the stress tensor
S which read, using S ¼ ST according to (3.128):

SI ¼ trS ¼ r11 þ r22 þ r33

SII ¼
1
2
ðS2

I � trS2Þ ¼ r11r22 þ r11r33 þ r22r33 � ðr2
12 þ r2

13 þ r2
23Þ

SIII ¼ det S ¼ r11r22r33 þ 2r12r23r13 � ðr11r
2
23 þ r33r

2
12 þ r22r

2
13Þ:

ð3:107Þ

At known coordinates rij of the stress tensor S, the three invariants (3.107) and
the eigen-values (principal stresses) rHj can be derived by using (3.106), by
solving the cubic equation. Finally, the eigen-vectors nHj can be derived using
(3.104) by solving the algebraic system of equations.

3.2.5 Balance Equations

In the previous sections strain and stress measures have been introduced inde-
pendently, and no relation between the two (kinematic and dynamic) measures has
been shown. In generating material equations, where these two measures must be
related, the first law of thermodynamics, as a balance equation, gains a predom-
inant role. Balance equations are relations where quantities of equal ‘quality’ are
balanced. The best known balance equation in mechanics (as a special case of the
principle of linear momentum) is the description of the motion of the mass centre
of a system of particles, where the sum of all external forces is equated (balanced)
with the inertia force of a body (‘‘force equal mass times acceleration’’). Balance
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equations are material independent and thus often referred to as universal
equations.

3.2.5.1 One-Dimensional Case

Analogue to the (one dimensional) outlines of Sects. 3.2.3.1 and 3.2.4.1, in the
following, it is demonstrated how a simple material model such as that for elastic
material behaviour can be derived from balance equations. Here, the (local) bal-
ance of mechanical energy (in the one-dimensional case) is used

_w ¼ r_e: ð3:108Þ

In (3.108), the time rate of change of the strain energy w (on the left-hand side)
and the stress power r_e (with the strain rate _e on the right-hand side) are balanced.
The strain energy in (3.108) is still unknown and an appropriate formulation,
therefore, must be made. If, in the simplest case, the strain energy w (in the
following referred to as strain energy function or sef for short) is formulated in a
first step as a function of the current strain e(t) and, in a second step as a quadratic
function e (in (3.109)2 c represents a material coefficient)

w ¼ w eð Þ ¼ w e tð Þ½ � and more precise w eð Þ ¼ ce2 ð3:109Þ

differentiation of (3.109)1 with respect to time applying the chain rule and equating
with (3.108) leads to

_w � d

dt
fw½eðtÞ�g ¼ dw

de
de
dt
� dw

de
_e ¼ð3:108Þ

r_e or
dw

de
� r

� �

_e ¼ 0 ð3:110Þ

For arbitrary strain rates _e it can be deduced from (3.110)2

r ¼ dw

de
ð3:111Þ

which leads to the decisive result that, based on the power–energy equation, the
stress can be derived by differentiation of w with respect to the strain! In this case,
w is referred to as the ‘‘potential for the stress’’. Furthermore, employing (3.109)2–
(3.111) the sought material model reads

r ¼ d

de
ðce2Þ ¼ 2ce ¼ f ðeÞ ð3:112Þ

which can be identified as the well-known HOOKE model using 2c: = E.

Conclusion: At given structure of the sef, the corresponding material model can
be derived by differentiation with respect to strain, following the previously out-
lined steps. It is understood that in the above example the formulation (3.109)2 has
been chosen accordingly, with respect to the (one-dimensional) HOOKE model. In
case of three-dimensional non-linear (hyper-) elasticity, for example, the relations
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are more complex and the structure of the sought material model is not a priori
known. The presented approach, however, demonstrates a feasible way to generate
material models and, in addition, observes the first law of thermodynamics.

In the following, the balance equations, i.e. linear momentum, angular
momentum and power, needed for three-dimensional representation of the
approach introduced above, are deduced.

3.2.5.2 Balance of Linear Momentum

The principle of linear momentum goes back to Newton’s lex secunda (1687) and
it reads

K ¼ _p with _p � dp

dt
ð3:113Þ

where K is the sum of all external forces acting on the body and, K equals the time
rate of change of the moment vector p. The resulting force vector K reads

K ¼ KV þ KA ð3:114Þ

with

KV :¼
Z

V

kdV and KA :¼
Z

A

tndA: ð3:115Þ

In (3.115), KV is he vector of the body forces and KA the vector of surface
forces, k is the force per unit volume and tn is the stress vector acting at the area
element dA on the surface A of the body (cf. also Fig. 3.20, KA also comprises
point loads acting on the body). The linear momentum vector p is defined by

p :¼
Z

m

vdm ¼
Z

V

qvdV ð3:116Þ

where v represents the (current) velocity of the mass element dm and the volume
element dV. Substitution of (3.114) to (3.116) in (3.113) and taking (3.93) into
account, leads to the balance of linear momentum of a continuum (body) in global
form

Z

V

kdvþ
Z

A

n � SdA ¼ d

dt

Z

V

qvdV : ð3:117Þ

Equation (3.117) is valid for arbitrary solid and fluid bodies of infinite size!
Generally, q, S and v are not known and are of interest in a (continuum
mechanical) structural analysis. These field quantities (even if K in (3.114) would
be given) can generally not be determined from the (global) integral formulations
(3.117). Here, differential relations in form of local momentum balances must be
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used instead. In this case, the surface integral in (3.117) is transformed, using the
GAUSS’ integral theorem

R

A n � SdA ¼
R

V rr � SdV; into a volume integral where
rr :¼ ðo=oxiÞei in contrast to (3.50) denotes the spatial NABLA-operator with the
spatial coordinates xi. Furthermore, differentiation of p with respect to time for the
right-hand side of (3.117) considering the conservation of mass
dm = q0dV0 = qdV where q and q0, respectively, and V and V0, respectively, are
the time-variable and time constant density, respectively, and the volume element
in the ICFG and the CCFG, respectively, results in

d

dt

Z

m

vdm ¼ d

dt

Z

V0

q0vdV0 ¼
Z

V0

d

dt
ðq0vdV0Þ ¼

Z

V0

q0 _vdV0 ¼
Z

V

q _vdV: ð3:118Þ

Arranging all terms on one side leads to
Z

V

ðrr � Sþ k� q _vÞdV ¼ 0: ð3:119Þ

The integral in (3.119) must vanish for arbitrary volumes V and thus the
integrand itself must be equal to zero, which leads to the local balance of
momentum (also referred to as CAUCHY I)

rr � Sþ k ¼ q _v: ðCauchy IÞ ð3:120Þ

Notes: The field equation (3.120) must be satisfied by the fields q, v, and S at
given k in every point of the continuum body. (3.120) is a vector-valued equation
for all three scalar-, vector- and tensor-valued unknowns q, v and S and three
scalar-valued equations, respectively, for total of 13 unknowns q rij and vi. (3.120)
represents a system of coupled first order partial differential equations in space and
second order in time.

Fig. 3.20 Balanced entities
at a body in the CCFG
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3.2.5.3 Balance of Angular Momentum

The second basic law of mechanics is the principle of conservation of angular
momentum

Ma
0 ¼ _d0 with _d0 �

dd0

dt
ð3:121Þ

stating that the sum of all external moments Ma
0 acting on a body and with respect

to the fixed point 0 are equal to the time rate of change of the angular momentum
vector d0, with respect to the same point. The resulting moment vector Ma

0 is thus

Ma
0 ¼ MV

0 þMA
0 ð3:122Þ

with

MV
0 ¼

Z

V

x� kdV and MA
0 ¼

Z

A

x� tndA: ð3:123Þ

In (3.123), MV
0 is the vector of volume moments and MA

0 the vector of surface
moments where x is the position vector pointing to the volume element dV in the
CCFG (cf. Fig. 3.20). The vector of angular momentum is defined by

d0 :¼
Z

V

qx� vdV: ð3:124Þ

Substitution of (3.122) to (3.124) in (3.121) and using CAUCHY’s lemma (3.93)
leads to the global balance of angular momentum

Z

V

x� kdV þ
Z

A

x� ðn � SÞdA ¼ d

dt

Z

V

qx� vdV: ð3:125Þ

Similar to the balance of linear momentum, the surface integral in (3.125) must
be transformed into a volume integral using the GAUSS’ integral theorem. With the
identities x� ðn � SÞ ¼ �ðn � SÞ � x ¼ �n � ðS� xÞ and rr � ðS� xÞ ¼ ðrr � SÞ�

xþ e
ð3Þ
� � S � �x� ðrr � SÞ þ e

ð3Þ
� � S as well as the GAUSS’ theorem, the surface

integral can be reformulated to
R

A x� ðn � SÞdA ¼ �
R

V rr � ðS� xÞdV ¼
R

V ½x� ðrr � SÞ � e
ð3Þ
� � S�dV . Furthermore, analogue to the differentiation done in

(3.117) and using ðdx=dtÞ � v � v� v ¼ 0 for the right-hand side of (3.125), it
follows d

dt

R

V qx� vdV ¼
R

V q _x� vþ x� _vð ÞdV ¼
R

V qx� _vdV :
Substitution of the previous terms in (3.125) and appropriate factoring (note

that the term in parentheses in (3.126) represents the balance of linear momentum
(3.120) and thus vanishes!) leads to
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Z

V

½x� ðrr � Sþ k� q_mÞ
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

0

� e
ð3Þ
� � S�dV ¼ �

Z

V

e
ð3Þ
� � SdV ¼ 0:: ð3:126Þ

The remaining integral term in (3.126) must vanish for arbitrary volume V. This
condition is satisfied only if the integrand itself vanishes such that

e
ð3Þ
� � S ¼ 0: ð3:127Þ

The double scalar product in (3.127) of the (third-order) antisymmetric Epsilon

tensor e
ð3Þ

and the CAUCHY stress tensor S can be only equal to zero if S is sym-
metric. From this the local balance of angular momentum follows in form of the
symmetry of the CAUCHY stress tensor (valid for arbitrary kinetic processes) (also
referred to as CAUCHY II)

S ¼ ST ðCauchy IIÞ: ð3:128Þ

Together with (3.89) and (3.128) it follows that rijeiej ¼ rijejei ¼ rjieiej:
Based on this the ‘‘equality of complementary shear stress’’ (also referred to as
BOLTZMANN-Axiom) follows

rij ¼ rji and r12 ¼ r21; r23 ¼ r32; r13 ¼ r31 respectively: ð3:129Þ

3.2.5.4 First Law of Thermodynamics (Energy Balance)

Using the principle of linear and angular momentum, the first law of thermody-
namics can be constituted, forming the basis for material model structure gener-
ation, as has previously been shown for the one-dimensional case. According to
the first law of thermodynamics, the sum of the time rate of change of the internal
energy U and the kinetic energy E equals to the sum of external power P and the
time rate of change by heat transfer Q, i.e. heat power of the continuum body

_E þ _U ¼ Pþ _Q: ð3:130Þ

Relating the specific entities e and u of the kinetic and internal total energies
E and U to the unit mass, the axiomatic formulations read as follows (v denotes the
velocity vector)

E ¼
Z

m

edm ¼
Z

V

qedV with e ¼ 1
2

v � v ¼ 1
2

v2 ð3:131Þ

U ¼
Z

m

udm ¼
Z

V

qudV : ð3:132Þ
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The external power is the sum of the power of the body forces (per unit volume)
PV with the body force vector k and the power of the surface forces PA with the
stress vector tn to be exerted to the body surface

P ¼ PV þ PA with PV :¼
Z

V

k � vdV; PA :¼
Z

A

tn � vdA: ð3:133Þ

The time rate of change by heat transfer is the sum of the heat transfer to the
body surface A due to the heat flow vector q and the heat transfer to the volume
V by radiation heat r.

_Q ¼ �
Z

A

n � qdAþ
Z

V

qrdV : ð3:134Þ

The time derivations needed in (3.130) can be obtained using (3.118) and
(3.131)2 as follows

_E ¼ d

dt

Z

m

edm ¼
Z

V

q _edV ¼
Z

V

q
d

dt

1
2

v � v
� �

dV ¼
Z

V

q
1
2
ð _v � vþ v � _vÞdV

¼
Z

V

q _v � vdV ð3:135Þ

_U ¼ d

dt

Z

m

udm ¼
Z

V

q _udV: ð3:136Þ

Substitution (3.133) to (3.136) in (3.130) leads to the first law of thermody-
namics in global form (for the entire body)

Z

V

q _v � vdV þ
Z

V

q _udV ¼
Z

V

k � vdV þ
Z

A

tn � vdA

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

I1

�
Z

A

n � qdA

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

I2

þ
Z

V

qrdV :

ð3:137Þ

To generate the local balance of (3.137), both surface integrals I1 and I2 on the
right-hand side are transferred in volume integrals using the GAUSS’ integral the-
orem as well as (3.93) and I1 :¼

R

A tn � vdA ¼
R

A n � S � vdA ¼
R

V r � ðS � vÞdV and

I2 :¼
R

A n � qdA ¼
R

V r � qdV . The underlined integral term in the integral I1 can
further be transformed using the ‘‘product rule’’ and the definitions of the velocity
gradient L :¼ vr in r � S � vð Þ ¼ r � Sð Þ � vþ S � � vrð Þ

|ffl{zffl}

L

� r � Sð Þ � vþ S � �L

such that substitution in (3.137) leads to the following form (the term in paren-
theses represents the balance of linear momentum (3.120) and thus vanishes):
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Z

V

½S � �L�r � qþ qr � q _uþ ðr � Sþ k� q _vÞ
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

0

�v�dV

�
Z

V

ðS � �L�r � qþ qr � q _uÞdV ¼ 0 :
ð3:138Þ

The integral (3.138) again must vanish for arbitrary volume V such that the
integrand itself must equal zero. Due to the symmetry of S in the double scalar
product S � �D, the symmetric part of L, namely the rate of deformation tensor
(stretch rate tensor) D given by

D ¼ 1
2
ðLþ LTÞ � 1

2
ðvrþrvÞ ¼ 1

2
ð _F � F�1 þ F�T � _FTÞ ¼ DT ð3:139Þ

can be used to finally lead to the first law of thermodynamics in local form

q _u ¼ S � �D�r � qþ qr: ð3:140Þ

In (3.138), the term S � �D is referred to as specific stress power (per unit
reference volume) (for the one-dimensional form of the stress power look (3.108)).
It is convenient to use the LEGENDRE-transformation

w :¼ u� gT ð3:141Þ

to introduce the HELMHOLTZ free energy w with the internal specific energy u, the
entropy g and the absolute temperature T. Differentiation of (3.141) with respect to

time leads to _w ¼ _u� _gT � g _T and (3.140) thus can be written

q _w ¼ S � �D�r � qþ qr � qðg _T þ _gTÞ: ð3:142Þ

3.2.5.5 Second Law of Thermodynamics

The following form of the second law of thermodynamics, often found in the
literature (Eringen 1967), can be used for a continuum body

C ¼ _K� U� N � 0: ð3:143Þ

According to (3.143), the total production of entropy C equals to the time rate

of change of the entropy _K reduced by the entropy flux U and the source N, where
the production of entropy C cannot be negative. In (3.143), the equal sign repre-
sents reversible processes and, the greater-than sign represents irreversible pro-
cesses. With the definitions

K :¼
Z

V

qgdV ; U :¼ �
Z

A

n � q
T

dA; N :¼
Z

V

q
r

T
dV ð3:144Þ
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Equation (3.143) transforms to the second law of thermodynamics in global
form, also referred to as CLAUSIUS–DUHEM-inequality

C ¼ d

dt

Z

V

qgdV �
Z

V

q
r

T
dV þ

Z

A

n � q
T

dA � 0: ð3:145Þ

The second law of thermodynamics in local form is obtained by expressing the
surface integrals in (3.145) as volume integrals using the GAUSS’ integral theorem

q _g� qr

T
þr � q

T

� �

� q _g� qr

T
þ 1

T
r � q� 1

T2
q � rT � 0: ð3:146Þ

Eliminating the divergence of the heat flow vector r�q in (3.146) by using
(3.142), the following form of the second law of thermodynamics is obtained,
which plays in important role during the generation process of constitutive models

S � �D� qð _wþ g _TÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

q _D

� 1
T

q � rT
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

q _DL

� 0: ð3:147Þ

In (3.147), q _D :¼ S � �D� qð _wþ g _TÞ is specific dissipation power (per unit
reference volume) (or the internal entropy production of the continuum body) and
q _DWL :¼ � 1

T q � rT is the specific entropy production (per unit reference volume)
due to temperature equalization. According to Truesdell and Noll (1965), the
inequality (3.147) must be fulfilled for both parts such that

q _D :¼ S � �D� qð _wþ g _TÞ � 0 holds: ð3:148Þ

Multiplying (3.148) with J = q0/q and defining the strain energy function
(referred to the undeformed volume element in the ICFG) by w :¼ q0w; (3.148)
degenerates in the case of isothermal processes (T = const) to

q0
_D � JS � �D� _w � 0: ð3:149Þ

In the case of (hyper-) elastic materials, the equality condition of the second law
of thermodynamics (3.148) applies leading to

q0
_D � JS � �D� _w ¼ 0: ð3:150Þ

3.2.6 Constitutive Equations

Strain and stress measures, as well as universally valid balance equations in the
form of linear and angular momentum principles and the first law of thermody-
namics, represent material independent relations. To characterize material, equa-
tions are needed which provide a relation between kinematic (motion, strain and
their time derivatives) and dynamic (stress and, if applicable, its time derivatives)
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quantities. The desired relation between stress and strain measures will be derived
based on appropriate strain energy functions w. Hence, the generation of consti-
tutive equations is treated extensively, based on rational mechanics.

3.2.6.1 Strain Energy Functions

w is referred to as a strain energy function (abbreviated with sef in the following)
describing purely mechanical processes. Such a function is considered as a con-
stitutive equation and must thus satisfy the principles of rational mechanics, i.e.
causality, determinism, local action and objectivity.

Principle of Causality. This principle determines the choice of dependent and
independent variables in the context of material model generation. Restriction to
pure mechanical processes, a relation between w and the motion v is constituted,
where w is identified as the dependent and v as the independent variable.

Principle of Determinism. The current state of a material point of the con-
tinuum is determined through the current motion and the entire motion-history of
all other material points of the continuum body. This means: w at the material
point X at (the present) time t with the position vector X is determined through
the motion history v of all material points Y of the body K from the remote past
s = -? to the present time s = t. Hence, using (3.47), the most general material
equation of w (in a mechanical process) takes the following form:

wðX; tÞ ¼ f
t

s¼�1
X;Y2K

hy;X; ti ¼ f
t

s¼�1
X;Y2K

hvðY; sÞ;X; ti: ð3:151Þ

Notes: In (3.151), f is a scalar-valued ‘‘functional’’ prescription (such as an
integral, a differential or a function). The use of angle brackets ‘‘h
i’’ emphasizes the
distinction of a functional and a function which usually is parenthesized. According
to (3.151), w can also be an explicit function of position X and time t thus comprising
inhomogeneous and aging materials. Inhomogeneous materials may exhibit different

Fig. 3.21 The principle of
determinism and the principle
of local action imply that the
state X is dependent on the
states of all other material
points Y of a body K, from
the remote past to the present
time
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material properties at each material point (material inhomogeneity). Aging effects
are observed, for example, in the form of creeping at decreasing velocity in con-
junction with concrete. The principle of determinism thus accommodates only the
remote past (including the present time) of the particular process, which is referred to
as a memory of a material. Future effects, however, are not accounted for (which can
not be strictly excluded from a natural philosophical perspective!) (Fig. 3.21).

Restricted to homogenous and non-aging materials, the explicit dependence of
X and t no longer applies, such that (3.151) takes the form

wðX; tÞ ¼ f
t

s¼�1
X;Y2K

hvðY; sÞi: ð3:152Þ

Principle of material objectivity (observer or frame indifference, observer
change). A material equation must not depend on the choice of the reference frame
or observer. A sef, thus, must provide the same value of w for two observers in
relative motion if both observers trace the motion history of one material point X
relative to different points of reference O and O* (cf. Fig. 3.22). When v(X, t) and
v*(X, t), respectively, are the configurations (motions) of the same body K; from
the point of view of two different observers O and O*, respectively, and
y* = v*(Y,t) and y = v(Y, t), respectively, are the corresponding motion histories.
The latter are related using the EUKLIDIAN transformation (rigid body motion) (in
(3.153)2 the definition (3.47) was used)

y	 ¼ Q tð Þ � yþ c tð Þ
v	 Y; tð Þ ¼ Q tð Þ � v Y; tð Þ þ c tð Þ

with Qðt ¼ 0Þ ¼ I and cðt ¼ 0Þ ¼ 0:

ð3:153Þ
In (3.153), Q(t) is a (proper) orthogonal time-dependent rotation tensor defined

by

Fig. 3.22 The principle of
observer indifference
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Q � QT ¼ QT � Q ¼ I respectively QT ¼ Q�1 and det Q ¼ þ1; ð3:154Þ

and c(t) is an arbitrary (time-dependent) translation which is independent of Q. By
(3.154), the constitutive equation of w, referred to the stationary (fixed) observer in
O, is given and,

w	ðX; tÞ ¼ f
t

s¼�1
X;Y2K

hv	ðY; sÞi ð3:155Þ

denotes the constitutive equation of the moving observer in O*. A scalar (and thus
also w) is referred to as objective if the following objectivity condition holds

w¼! w	 and f
t

s¼�1
X;Y2K

hvðY; sÞi¼! f
t

s¼�1
X;Y2K

hv	ðY; sÞi and

f
t

s¼�1
X;Y2K

hvðY; sÞi¼! f
t

s¼�1
X;Y

hQðtÞ � vðY; tÞ þ cðtÞi
ð3:156Þ

where the value of the functional f must equal the argument v and its transformed
v*. Since both quantities in (3.156)3, c(t) and Q, may take arbitrary values and are
independent from each other, they may be chosen as

cðtÞ ¼ �vðX; tÞ and QðtÞ ¼ I ð3:157Þ

such that, according to (3.157)1, the motion histories of all material points X, Y[K
are equal and undergo a pure translation c(t) and, according to (3.157)2, the
rotation Q degenerates to identical mapping. Substitution of (3.157) in (3.156)3

leads to the following reduced constitutive equation which satisfies the principles
of determinism and objectivity

wðX; tÞ ¼ f
t

s¼�1
X;Y2K

hvðY; sÞ � vðX; sÞi: ð3:158Þ

According to (3.158), the sef at the material point X at position X at (present)
time t in the ICFG is not determined by the absolute motion v(Y, t) but rather by
the difference in motion histories vðY; sÞ � vðX; sÞ and thus in addition, by the
‘‘action’’ of all other body points with position Y in the ICFG (cf. Fig. 3.21).

Note: regarding Fig. 3.22, using (3.153), (3.154)1 can be rewritten as follows:

y ¼ QTðtÞ � y	 � QTðtÞ � cðtÞ � QTðtÞ � ½y	 � cðtÞ�: ð3:159Þ

According to (3.159) (at fixed y*) the position y of the material point Y with
respect to the observer in O (visual line of the observer in O) is composed of the
translational motion -QT�c (O* to O) and the rotated position y* with respect to
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Q (visual line of the observer in O*) (cf. the addition of vectors in Fig. 3.22). The
position of the material point Y with respect to the observer in O* (at fixed y)
follows from (3.151) and yields (cf. the addition of vectors in Fig. 3.22)

QTðtÞ � y	 ¼ yþ QTðtÞ � cðtÞ: ð3:160Þ

Non-local Materials. Following the principle of determinism, the physical
action at the (material) point X is determined by the action at all other points Y of
the body, whereby the region of influence extends over the entire body. Restricting
this region of influence, following the principle of local action, it seems reasonable
to replace the difference in motion history (3.158) with its TAYLOR series, which
can then be truncated, depending on the quality of description (modelling). Using
the distance vector DX ¼ Y � X of positions X and Y of two material points X and
Y in the ICFG (cf. Fig. 3.21), the motion history of Y may formally be written as
vðY; sÞ ¼ vðX þ DX; sÞ: Analogous to the TAYLOR series, expansion of a scalar-
valued function of multiple variables, the TAYLOR series expansion of v(Y, s) about
the position X of the material point X yields

vðY; sÞ ¼ vðX þ DX; sÞ ¼ vðX; sÞ þ 1
1!

ovðX; sÞ
oX

� DX þ 1
2!

o2vðX; sÞ
oX2 � �ðDXDXÞ þ . . .

ð3:161Þ

Considering the definition of the deformation gradient (3.49) and the thus
defined higher gradients of F, namely o2vðX; sÞ=oX2 ¼ oF=oX ¼ xrr ¼
FðX; sÞr as well as o3vðX; sÞ=oX3 ¼ o2F=oX2 ¼ xrrr ¼ FðX; sÞrr etc.,
(3.161) can be rewritten as

vðY; sÞ � vðX; sÞ ¼ F � DX þ 1
2
ðFrÞ � �ðDXDXÞ þ . . .. . .. . .þ . . .. . . ð3:162Þ

Substitution of (3.162) in (3.158) leads to the following constitutive equation
for w (the infinite expansion occurring in the second form of (3.163) may hereby
be thought of as being ‘‘smeared’’ into the functional directive)

wðX; tÞ ¼ f
t

s¼�1

X

1

k¼1

1
k!
½FðX; sÞrr. . .r

|fflfflfflfflffl{zfflfflfflfflffl}

k�1 times

� � � � � � �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

k fold scalar

ðDXDX. . .DXÞ
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

k times

* +

¼ f
t

s¼�1
FðX; sÞ;FðX; sÞr; . . .. . .;FðX; sÞrr. . .r

|fflfflfflfflffl{zfflfflfflfflffl}

N�1 times
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Material of Grade N

; . . .. . .. . .

* + ð3:163Þ

Equation (3.163) represents the exact constitutive equation of (3.158) since the
TAYLOR series expansion has not been truncated and all gradients of F have been
accounted for. The term non-local theories implies that non-local actions (at a
distance) are taken into account. Based on this (3.163), the following special cases
may be extracted:
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Material of Grade N. Constitutive equations of matters of grade N arise from
(3.163) by truncating the TAYLOR series expansion after the N-th term. The func-
tional f thus takes gradients of F up the N-th grade into account, involving an
estimation of the remainder terms. Based on this, gradient theories or non-classical
continuum models can be developed, which describe micro-mechanical material
effects (Silber 1986; Alizadeh 2001; Trostel 1985, 1988).

Principle of Local Action - Materials of Grade 1 (Simple Matter). The
constitutive equation referring to simple matter (materials of grade 1) and going
back to (Coleman and Noll 1959) arises from (3.163) for N = 1 such that the
following form results

wðX; tÞ ¼ f
t

s¼�1
hFðX; sÞi: ð3:164Þ

The state of w at the material point X thus is influenced by its immediate
(infinitesimal) neighbourhood only, considered from a spatial point of view
(extreme case of the principle of local action), however, fully considering the
history of the deformation gradient F(X,s).

Since the argument F in (3.164) is not an objective tensor, the principle of
material objectivity must once more be applied to w to obtain a material equation
that satisfies all principles of rational mechanics. If, analogue to (3.152), the
constitutive equation for w with respect to the fixed observer in O is given by
(3.164) and, analogue to (3.155), the constitutive equation of the moving observer
is given by

w	ðX; tÞ ¼ f
t

s¼�1
hF	ðX; sÞi; ð3:165Þ

the following must hold based on the assumption that the objectivity condition
(3.156)1 and (3.156)2, respectively, formally applies if the argument is F

w¼! w	 or f
t

s¼�1
hFðX; sÞi¼! f

t

s¼�1
hF	ðX; sÞi: ð3:166Þ

The ‘‘EUKLIDIAN transformed argument’’ F* in (3.165) and (3.166) is obtained
through substitution of (3.153)1 and (3.153)2, respectively, in (3.49) and by
substituting x = y* as well as considering the time-dependence of Q and c:

F	 ¼ y	r0 ¼ ½QðtÞ � yþ cðtÞ�r0 ¼ ½QðtÞ � y�r0 þ cðtÞr0 ¼ QðtÞ � ðyr0Þ
|fflffl{zfflffl}

F

¼ QðtÞ � F;

i.e. F	 ¼ QðtÞ � F (which immediately implies that F is not an objective tensor).
Equation (3.166) thus is transformed into the following objectivity condition
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f
t

s¼�1
hFðX; sÞi¼! f

t

s¼�1
hQðsÞ � FðX; sÞi: ð3:167Þ

Since F does not represent a measure of strain (cf. Sects. 3.2.3.5 and 3.2.3.6) it is
convenient to replace F on the right-hand side of (3.167) by means of the polar
decomposition theorem (3.59) such that

f
t

s¼�1
hFðX; sÞi¼! f

t

s¼�1
hQðsÞ � RðsÞ � UðX; sÞi: ð3:168Þ

Equation (3.168) is valid for arbitrary orthogonal tensors Q, thus including the
special case Q = RT, such that considering (3.61) it further follows

f
t

s¼�1
hFðX; sÞi¼! f

t

s¼�1
hRTðsÞ � RðsÞ
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

I

�UðX; sÞi ¼ f
t

s¼�1
hUðX; sÞi ð3:169Þ

and, finally due to (3.66)1,

wðX; tÞ ¼ f
t

s¼�1
hUðX; sÞi ¼ g

t

s¼�1
hCðX; sÞi : ð3:170Þ

Equation (3.170) satisfies all principles of rational mechanics implying that the
strain energy function w can be a function of the right stretch tensor U and the right
CAUCHY strain tensor C only!

Hyperelastic Materials. Hyperelastic materials represent a subgroup of elastic
(also referred to as CAUCHY-elastic) materials and an elastic potential w exists
from which stress can be derived by differentiation with respect to the strain
(cf. Sect. 3.2.5.1). In the right-hand side of (3.170), the history of the right stretch
tensor and right CAUCHY strain tensor are considered using their current values (at
present time t). The functional f in (3.170) thus transforms to the function f and g,
respectively, yielding the following relation

wðX; tÞ ¼ f ½UðX; tÞ� ¼ g½CðX; tÞ�: ð3:171Þ

In (3.171), no history effects are thus considered and viscoelastic materials, for
example, cannot be described!

Material Symmetry. In case of material symmetries (3.171) may be further
reduced. Symmetries here refer to the sef being partially direction independent. If,
for example, tensile testing is conducted with a specimen and the specimen is
loaded (deformed) in different defined directions (from an initial stress and strain-
free state - (ICFG)), material symmetry exists if the resulting stress–strain curves
are identical and the values of w for these processes are identical. Note, however,
that this does not represent an additional principle of rational mechanics to be
satisfied by the material equation, but rather a further simplification of (3.171) in
case certain symmetries exist!
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In terms of a pre-operation, two reference configurations, i.e. ICFG 1 and ICFG
2, are considered (cf. Fig. 3.23). On the basis of the modification of rigid motion
(3.153) introduced in the context of material objectivity where the (current)
positions of two moving observes are transformed, the following relation

~XðXÞ ¼ K � X þ c ð3:172Þ

transforms the position of a material point from X (ICFG 1) to ~X (ICFG 2). In
(3.172), K is the tensor of the ‘‘change in reference configurations’’ (e.g. rotations)
and c represents a translation. According to (3.47), the material point X is trans-
formed from position X (ICFG 1) and ~X (ICFG 2), to position x (CCFG) by the
motion v and ~X, respectively, such that x ¼ vðX; tÞ ¼ ~vð~X; tÞ. Substituting this
relation in (3.53) and using (3.172) as well as the chain rule yields

F ¼ ox

oX
¼

o~v ~X Xð Þ; t
 �

oX
¼

o~v ~X Xð Þ; t
 �

o~X
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

~F

� o
~X

oX
|{z}

K

¼ ~F � K: ð3:173Þ

Scalar multiplication of the latter relation by K�1 from the right-hand side,
yields the following transformation rule

~F ¼ F � K�1 ð3:174Þ

stating that both deformation gradients F and ~F emerge from the change-in ref-
erence-configuration tensor K.

Fig. 3.23 Material
symmetry of a material
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In terms of material symmetry, the sef (3.171) must be insensitive to a change
of the reference configuration from ICFG 1 to ICFG 2 such that considering
(3.174) the following relation yields

w ¼ g Cð Þ¼! g ~C
� 	

¼ g ~FT � ~F
� 	

¼ g F � K�1
� 	T � F � K�1

� 	

h i

¼ g K�T � FT � F � K�1
� 	

ð3:175Þ

Taking the definition for the right CAUCHY strain tensor (3.64)1 into account,
from (3.175) the following symmetry condition arises

w ¼ g Cð Þ¼! g K�T � C � K�1
� 	

: ð3:176Þ

In (3.176), w must take the same value independent of the deformation process
being controlled by C or by the variation of change of configuration systems
K�T � C � K�1 generated by K.

Based on (3.176) various material symmetries can be defined which, in addi-
tion, can be associated with so-called crystal classes (not treated here). Extreme
cases are outlined, whereas in the case of an anisotropic representation of w the
reader is referred to Sect. 3.2.6.3.

1. Fully Anisotropic Materials. The tensor of the ‘‘change in reference con-
figurations’’ is the identity tensor such that

K ¼ I and according to ð3:174Þ; respectively; ~F ¼ F ð3:177Þ

whereby the material exhibits different material properties in each direction.
Relation (3.176) thereby is identically satisfied and can not be further reduced.

2. Isotropic Materials. The tensor of the ‘‘change in reference configurations’’
comprises all orthogonal transformations Q (cf. (3.154) such that

K ¼ Q and according to 3:174ð Þ; respectively; ~F ¼ F � Q�1 ð3:178Þ

Q � QT ¼ QT � Q ¼ I respectively K�1 ¼ Q�1 and detQ ¼ þ1

Based on (3.154) the relations K�1 ¼ Q�1 ¼ QT and K�T ¼ Q�T ¼ Q hold
such that (3.176) transforms to the following condition of isotropy for scalar-
valued tensor functions of a tensor-valued variable

w Cð Þ ¼ w Q � C � QT
� 	

: ð3:179Þ

Materials that satisfy condition (3.179) exhibit equal material properties in all
directions (directional independence or isotropy) such that w always takes the
same values independent of the initial orientation of the body, no matter if the
process is controlled by C or by the variation Q�C�QT generated by Q.

Based on representation theorems it can be shown (Spencer 1965; Smith 1969;
Wang 1969a, b) that condition (3.179) is satisfied if C is replaced by its three basic
invariants (which are insensitive regarding orthogonal transformations Q)
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CI :¼ trC � I � �C; CII :¼ 1
2

C2
I � trC2

� 	

¼ 1
2

I � �Cð Þ2�C � �C
h i

CIII :¼ det C � 1
3

CICII � CI trC
2 þ trC3

� 	

ð3:180Þ

such that the sef in the isotropic case is a function of the three invariants Ci of the
right CAUCHY strain tensor

w Cð Þ ¼ w CI ;CII ;CIIIð Þ: ð3:181Þ

Strain energy Functions as Functions of Stretch. Commonly, in the literature
and in FE-software, strain energy functions w are given as functions of the prin-
cipal stretches of the right stretch tensor U, such that the derived constitutive
equations result in spectral form. In this process, the right stretch tensor U is
transformed into spectral form using (3.60) and the particular eigen-value problem
(analogue to the principal axis transformation of the CAUCHY stress tensor S, cf.
‘‘Principal Stresses’’ in Sect. 3.2.4.4)

U ¼
X

3

i¼1

kimimi and U½ � ¼
k1 0 0
0 k2 0
0 0 k3

2

4

3

5 mimih i: ð3:182Þ

In (3.182), the ki are the eigen-values or principal stretches and the mi are the
eigen-vectors or principal directions of U (in the ICFG). Using (3.66) and (3.182)
and considering mi �mj ¼ dij; the corresponding spectral representation of the
right CAUCHY strain tensor yields

C ¼
X

3

i¼1

jimimi with ji ¼ k2
i and C½ � ¼

k2
1 0 0

0 k2
2 0

0 0 k2
3

2

4

3

5 mimih i: ð3:183Þ

It can be seen that C has the same eigen-vectors mi as does U, the eigen-values,
however, are the squared values of that of U! The three eigen-vectors mi and the
eigen-values ji of C are derived based on the eigen-value problem C � jiIð Þ �
mi ¼ 0 (i = 1, 2, 3). Using (3.183), the three basic invariants of C (3.180) derive
as functions of the three principal stretches:

CI ¼ trC ¼ k2
1 þ k2

2 þ k2
3 ; CII ¼ 1

2 C2
I � trC2

� 	

¼ k2
1k

2
2 þ k2

2k
2
3 þ k2

1k
2
3

CIII ¼ det C ¼ k2
1k

2
2k

2
3: ð3:184Þ

According to (3.184), Ci ¼ Ciðk1; k2; k3Þ for (i = I, II, III) such that the strain
energy function w (3.181) can also be formulated in terms of functions of the
principal stretches:

w Cð Þ ¼ w CI k1; k2; k3ð Þ;CII k1; k2; k3ð Þ;CIII k1; k2; k3ð Þ½ � ¼ w k1; k2; k3ð Þ
¼ w k1 Cð Þ; k2 Cð Þ; k3 Cð Þ½ �:

ð3:185Þ
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For transformation of the stress tensors (3.96) and (3.98) in spectral form, the
deformation gradient in spectral form is needed. Substituting (3.182) in (3.59)
leads to

F ¼ R � U ¼ R �
X

3

i¼1

kimimi

 !

¼
X

3

i¼1

ki R �mið Þ
|fflfflfflffl{zfflfflfflffl}

ni

mi; i.e.

F ¼
X

3

i¼1

kinimi and F½ � ¼
k1 0 0
0 k2 0
0 0 k3

2

4

3

5 nimih i ð3:186Þ

with

ni ¼ R �mi: ð3:187Þ

In (3.186), ni ¼ R �mi are the principal directions (eigen-vectors) rotated with
the versor R with respect to mi in the CCFG. Based on the ‘‘mixed’’ principal
direction dyads nimi, the two-field tensor property of F becomes apparent. From
the simple form (3.186), the inverse of F and the JACOBI-determinant J (third
invariant of F) derive to

F�1 ¼
X

3

i¼1

k�1
i mini and F½ � ¼

k�1
1 0 0
0 k�1

2 0
0 0 k�1

3

2

4

3

5 minih i ð3:188Þ

J ¼ det F ¼ k1k2k3: ð3:189Þ

Split into Deviatoric (Isochoric) and Volumetric Parts. In the case of
compressible materials, a split of the constitutive equation into deviatoric and
volumetric parts is advantageous. This is done by performing a multiplicative
decomposition of the deformation gradient F into a volume-changing (dilational)
part �F and a volume-preserving (distortional) part J1/3I so that (e.g. (Lee 1969))

F ¼ J1=3I
� �

� �F � J1=3 �F and �F ¼ J�1=3F: ð3:190Þ

With (3.190) a relation between the modified principal stretches (deviatoric
principal stretches) �ki and the eigen-values ki (principal stretches) of the right
stretch tensor U is obtained (the second term in (3.191) is obtained using (3.189)

and (3.190) and the relation det �F ¼ det J�1=3F
� 	

¼ J�1=3
� 	3

det F ¼ J�1 det F ¼
J�1J ¼ 1 resulting in)

�ki :¼ J�1=3ki i ¼ 1; 2; 3ð Þ and �J :¼ det �F ¼ �k1
�k2

�k3 ¼ 1: ð3:191Þ

Using (3.190) and (3.66)1 the modified right CAUCHY strain tensor �C (distor-
tional part) yields
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C ¼ FT � F ¼ J2=3 �FT � �F � J2=3I
� �

� �C and �C :¼ �FT � �F � J�2=3C ð3:192Þ

and, based on (3.192) considering (3.180), (3.184) and (3.191)2 the following
invariants of �C yield

�CI ¼ tr�C ¼ I � ��C ¼ �k2
1 þ �k2

2 þ �k2
3

�CII ¼
1
2

�C2
I � tr�C2

� 	

¼ 1
2

I � ��Cð Þ2��C � ��C
h i

¼ �k2
1
�k2

2 þ �k2
2
�k2

3 þ �k2
1
�k2

3

�CIII ¼ det �C ¼ det �FT � �F
� 	

¼ det �FT
� 	

det �Fð Þ ¼ det �Fð Þ2� �J2 ¼ 1:

ð3:193Þ

By means of (3.190) to (3.193) and split into a deviatoric �w �Cð Þ and a volumetric
part f(J), a decoupled representation of the strain energy function w can be pos-
tulated as follows

w Cð Þ ¼ �w �Cð Þ þ f Jð Þ: ð3:194Þ

Important Properties of Strain Energy Function. Besides the previously
mentioned representation of a strain energy function satisfying material objectivity
and material symmetry, w in addition, must satisfy the following conditions:

1. Positive Definiteness: According to

w ¼ w Cð Þ ¼ [ 0; fur C 6¼ I
¼ 0; fur C ¼ I

�

ð3:195Þ

and due to w [ 0, there is always strain energy needed to reach a deformed state
(C = I and ki = 1, respectively) whereas w in a strain-free state (C = I respec-
tively ki = 1) equals zero and thus takes a global minimum (in the ICFG).

2. Growth Condition: According to

lim
J!o

w ¼ 1 and lim
J!1

w ¼ 1; ð3:196Þ

An infinite strain energy is needed to compress a volume element (and a
continuum) to a point (J ? 0) or to infinitely stretch it (J ? ?) (Ciarlet 1988).
Due to (3.195)2, the parts of (3.194) must satisfy

�w �C ¼ Ið Þ ¼ 0 and f J ¼ 1ð Þ ¼ 0 : ð3:197Þ

3.2.6.2 Isotropic Representations of Strain Energy Functions

Based on Sect. 3.2.6.1, particularly (3.181), (3.185), (3.195) and (3.196), special
forms of sef may be generated. Compressible and incompressible materials are
distinguished, whereby most sef used here is restricted to (slightly) compressible
materials, so that the incompressible case is not treated in detail. Note, however,
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that in the following strain energy functions w, in the isotropic case J = 1, the
modified measures �Ci and �ki; degenerate to the original variants Ci and ki,
respectively. Some sef taken from the literature are listed below. The issue of
material stability restrictions resulting from convexity requirements, with respect
to their respective material parameters, is treated in Sect. 3.4 in the context of
material identification. N and M may be considered as model or order parameters.
The volumetric and deviatoric parts within the representations of w generally
follow from the postulate given in (3.194).

Polynomial Form as a Function of Invariants. The most general power series
expansion of (3.181) of w in the three invariants of C yields

w ¼ wðCI ;CII ;CIIIÞ ¼
X

1

i¼0

X

1

j¼0

X

1

k¼0

cijkðCI � 3ÞiðCII � 3ÞjðCIII � 3Þk ð3:198Þ

where the cijk are the expansion coefficients and, c000 must be equal to zero. The
powers of the invariants Ci (summation to ?) may further be reduced using the
CAYLEY–HAMILTON-theorem. In (Abaqus 2010), instead of (3.198) and according to
(3.193), a polynomial representation of w is used

w ¼ �wð�CI ; �CIIÞ þ f ðJÞ

with �wð�CI ; �CIIÞ : ¼
X

N

i¼0

X

M

j¼0

cijð�CI � 3Þið�CII � 3Þj
ð3:199Þ

with the deviatoric (isochoric) and the volumetric parts �wð�CI ; �CIIÞ and f(J), the
expansion coefficients (material parameters) cij and, c00 = 0. For N = 1, M = 0
and c10 = l/2 and based on (3.199), the special case of the in �CI linear
NEO–HOOKE model follows

w ¼ �wð�CIÞ þ f ðJÞ with �wð�CIÞ :¼ l
2
ð�CI � 3Þ: ð3:200Þ

In (3.200), the first part is based on Treolar (1943) and f(J) according to
(3.202)2 on Blatz (1971). For N = M = 1 and c10 = l1/2 and c01 = l2/2, the
special case of the MOONEY–RIVLIN model (Mooney 1940; Wriggers 2008) which is
linear in �CI and �CII yields

w ¼ �wð�CI ; �CIIÞ þ f ðJÞ

with �wð�CI ; �CIIÞ : ¼ l1

2
ð�CI � 3Þ þ l2

2
ð�CII � 3Þ:

ð3:201Þ

Several proposals have been made regarding the ‘‘volumetric function’’
f(J) and, some are listed subsequently (Blatz 1971; Ogden 1984; Ciarlet 1988;
Abaqus 2010)
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f ðJÞ ¼ 1
2
kðln JÞ2 � l ln J; f ðJÞ ¼ l

b
ðJ�b � 1Þ mit b ¼ 2m

1� 2m

f ðJÞ ¼ �
X

N

i¼1

l
i
ln Jþ k

b2 ðJ
�b � 1þ b ln JÞ

f ðJÞ ¼ cðJ � 1Þ2 � b ln J; f ðJÞ ¼ aðJ�4 � 1Þ þ bðJ2 � 1Þ2

ð3:202Þ

A detailed discussion on various functions f(J) as well as respective convex
and polyconvexity requirements can be found in Doll (1998) and Doll and
Schweizerhof (2000).

Representation as a Function of Principal Stretch. Often, sef are formulated
in terms of the principal stretches ki and their modified variants �ki of the right
stretch tensor U. In Ogden (1972), the following strain energy function for
incompressible materials based on the first invariants of generalized strain tensors
(tensor functions of powers in C and B) is given

wðk1; k2; k3Þ ¼
X

N

k¼1

lk

ak
ðkak

1 þ kak
2 þ kak

3 � 3Þ �
X

N

k¼1

lk

ak

X

3

i¼1

ðkak
i � 1Þ ð3:203Þ

with k3 ¼ k�1
1 k�1

2 . A variation of (3.203) valid for compressible materials was
proposed by Saleb et al. (1992) and reads

wðk1; k2; k3Þ ¼ �wð�k1; �k2; �k3Þ þ f ðJÞ

with �wð�k1; �k2; �k3Þ : ¼
X

N

k¼1

lk

ak
ð�kak

1 þ �kak
2 þ �kak

3 � 3Þ �
X

N

k¼1

lk

ak

X

3

i¼1

ð�kak
i � 1Þ

ð3:204Þ

with decoupled deviatoric (isochoric) and volumetric parts �w and f(J) and the
modified principal stretches �ki defined in (3.191)1.

A general form based on (3.203) (which satisfies certain polyconvexity
requirements) was proposed in Ciarlet (1988)

wðk1; k2; k3Þ ¼
X

N

i¼1

aiðkai
1 þ kai

2 þ kai
3 Þ

þ
X

M

j¼1

bj½ðk1k2Þbj þ ðk1k3Þbj þ ðk2k3Þbj � þ f ðJÞ:
ð3:205Þ

The term trI = 3, however, needed to satisfy condition (3.195), is missing in
both summands in (3.205). These terms, however, are added with reference to the
literature in the following form equivalent to (3.205)

w Fð Þ ¼ w F;CofF; Jð Þ ¼ w1 Fð Þ þ w2 CofFð Þ þ w3 Jð Þ ð3:206Þ

72 3 Fundamentals



with

w1 Fð Þ :¼
X

N

i¼1

ai trCai=2 � 3
� �

; w2 CofFð Þ :¼
X

M

j¼1

bj tr CofCð Þbj=2�3
h i

w3 Jð Þ :¼ f Jð Þ; CofC :¼ CIIIC
�T � adjCð ÞT¼ oCIII

oC

� �T

; C ¼ FT � F

ð3:207Þ

where w is subdivided into three parts. The three argument functions of the
deformation gradient in (3.206) represent the transformation of a surface- and
volume element of the ICFG into the CCFG, cf. (3.54) and (3.55).

Slightly and Highly Compressible Elastomers. The following strain energy
function was proposed by Ogden (1972a) for slightly compressible materials

w ¼ �wð�k1; �k2; �k3Þ þ f ðJÞ with f ðJÞ ¼
X

N

k¼1

1
Dk
ðJ � 1Þ2k

and �wð�k1; �k2; �k3Þ :¼ 2
X

N

k¼1

lk

a2
k

ð�kak
1 þ �kak

2 þ �kak
3 � 3Þ � 2

X

N

k¼1

lk

a2
k

X

3

i¼1

ð�kak
i � 1Þ:

ð3:208Þ

For N = 1 and a1 = 2 and for N = 2 and a1 = 2 and a2 = -2 and based on
(3.208) the Neo–HOOKE and the MOONEY–RIVLIN model results, which however,
can also be generated by substituting (3.184) in (3.200) and (3.201), respectively,
considering (3.191). For the description of highly compressible materials, Hill
proposed the following form (Hill 1978)

w ¼ 2
X

N

k¼1

lk

a2
k

½kak
1 þ kak

2 þ kak
3 � 3þ fkðJÞ� mit fkðJÞ ¼

1
bk
ðJ�akbk � 1Þ ð3:209Þ

which was employed in an experimental work by Storåkers (1986). This model
was found to provide good correspondence with test data for both highly com-
pressible and slightly compressible elastomers.

3.2.6.3 Anisotropic Representations of Strain Energy Functions

Polynomial Form. One possible approach to generate constitutive equations for
anisotropic hyperelastic materials based on the isotropy of space (Boehler 1975,
1979) is considered in Silber (1988, 1990). Accordingly, the strain energy function
w in form of a (scalar-valued) tensor function of the GREEN strain tensor G and
N additional direction tensors Ki (i = 1, 2,…., N) based on (3.69)

w ¼ w G;K1;K2; ::::KN ;ð Þ ð3:210Þ

must satisfy an extended isotropy condition according to (3.179)
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w G;K1;K2; ::::KN ;ð Þ ¼ w Q � C � QT ;Q � K1 � QT ;Q � K2 � QT ; ::::;Q � KN � QT
� 	

:

ð3:211Þ

The ‘‘solution’’ of (3.211) is given through the power expansion (each P = ?)
by

w ¼ w G;K1;K2; ::::KNð Þ

¼
P

P

k¼2

P

P

m1¼0

P

P

m2¼0

::::::
P

P

mN¼0

J
ðsÞ � � �: � ��
|fflfflffl{zfflfflffl}

s�fold
scalar

K1K1::::K1
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

m1�times

0

@

1

A::::: KNKN ::::KN
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

mN�times

0

@

1

A GG::::G
|fflfflfflffl{zfflfflfflffl}

k�times

 !

2

4

3

5

ð3:212Þ

where the expansion coefficients arise in the form of families of isotropic tensors

of s-th grade, composed of M isotropic tensors of s-th order Ij

ðsÞ

J
ðsÞ

:¼
X

M

j¼1

cðsÞj Ij

ðsÞ
; s ¼ 2 k þ

X

N

a¼1

ma

 !

; k ¼
X

N

a¼1

ma ð3:213Þ

with cðsÞk material parameters (ma = 0 for at least one ma with a = 1, 2,…, N)
(Silber 1986).

By means of an appropriate recursion relation in terms of the CAYLEY–HAMILTON

theorems (3.212) could principally be reduced to a polynomial in G. The form
(3.212) can be rewritten in a more convenient form

w ¼ w G;K1;K2; ::::KNð Þ ¼
X

P

k¼2

Ĉ
ð2kÞ
� � �::: � ��
|fflfflfflffl{zfflfflfflffl}

2k�fold
scalar

GG::::G
|fflfflfflffl{zfflfflfflffl}

k�times

0

@

1

A ð3:214Þ

where the material tensors of 2nd grade Ĉ
ð2kÞ

generated from dyadic aggregates of
second order direction tensors Ki are defined by

Ĉ
ð2kÞ
¼ Ĉ
ð2kÞ

K1;K2; ::::KNð Þ :
¼
P

P

m1¼0

P

P

m2¼0
::::::

P

P

mN¼0
J
ðsÞ
� � �: � ��
|fflfflffl{zfflfflffl}

s�2kð Þ�fold
scalar

K1K1::::K1
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

m1�times

0

@

1

A::::: KNKN ::::KN
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

mN�times

0

@

1

A

2

4

3

5

ð3:215Þ

Knowing that non-linear constitutive stress–strain relations in polynomial form
(due to the CAYLEY–HAMILTON recursion) can always be reduced to a quadratic
polynomial in the respective strain measure (3.214) may be reduced to the fol-
lowing cubic form in G (P = 3)
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w ¼ w G;K1;K2; ::::KNð Þ ¼
P

3

k¼2
Ĉ
ð2kÞ
� � �::: � ��
|fflfflfflffl{zfflfflfflffl}

2k�fold
scalar

GG::::G
|fflfflfflffl{zfflfflfflffl}

k�times

0

@

1

A

¼ Ĉ
ð4Þ
� � � � GGð Þ þ Ĉ

ð6Þ
� � � � � � GGGð Þ

ð3:216Þ

where

Ĉ
ð4Þ

:¼
X

P

a¼1

X

P

b¼1

Jab

ð8Þ
� � � � KaKb

� 	

; Ĉ
ð6Þ

:¼
X

P

a¼1

X

P

b¼1

X

P

c¼1

Jabc

ð12Þ
� � � � � � KaKbKc

� 	

ð3:217Þ

are material tensors of fourth and sixth order, generated from families of isotropic

tensors of eighth and twelfth order Jab

ð8Þ
and Jabc

ð12Þ
which represent the direction

properties of the respective anisotropies in the form of fourth and sixth order,
respectively, tensor functions of the second order direction tensors Ki.

Strain Energy Functions of Second Order (for Tensor-Linear Constitutive
Stress–Strain Relations). Restricting to tensor-linear constitutive stress–strain
relations (3.216) reduces to the quadratic term in G (P = 2) such that

w ¼ w G;K1;K2; ::::KNð Þ ¼ Ĉ
ð4Þ
� � � � GGð Þ; Ĉ

ð4Þ
:¼
X

P

a¼1

X

P

b¼1

Jab

ð8Þ
� � � � KaKb

� 	

:

ð3:218Þ

In the case of orthotropic materials, the direction effects are characterized by
three direction tensors (following Boehler 1975, 1979)

Ka � Ma :¼ eaea a ¼ 1; 2; 3ð Þ a not summed!ð Þ ð3:219Þ

with the direction vectors ea characterizing the respective anisotropy and the
properties

Ma �Mb ¼
Ma f €ur a ¼ b
0 f €ur a 6¼ b;

�

P

3

a¼1
Ma ¼

P

3

a¼1
eaea ¼I : ð3:220Þ

Using (3.219), (3.218) transforms into (P = 3)

w ¼ w G;M1;M2;M3ð Þ ¼ Ĉ
ð4Þ
� � � � GGð Þ

with Ĉ
ð4Þ

:¼
X

3

a¼1

X

3

b¼1

Jab

ð8Þ
� � � � MaMb

� 	

and Jab

ð8Þ
:¼
P

105

j¼1
cðabÞ

j Ij

ð8Þ
:

ð3:221Þ
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Expansion of the four-fold scalar product in (3.221) and considering the 105

independent isotropic tensors of rank eight Ij

ð8Þ
outlined in Silber (1986) leads to the

following strain energy function composed of the nine ‘‘mixed’’ basic invariants Ij

(j = 1, 2,…, 9)

w ¼ w G;M1;M2;M3ð Þ ¼
X

9

k¼1

ckIk G;M1;M2;M3ð Þ

with I1 :¼ tr2M1 � G; I2 :¼ tr2M2 � G; I3 :¼ tr2M3 � G
I4 :¼ trM1 � G �M2 � G; I5 :¼ trM1 � G �M3 � G
I6 :¼ trM2 � G �M3 � G; I7 :¼ trM1 � Gð Þ trM2 � Gð Þ
I8 :¼ trM1 � Gð Þ trM3 � Gð Þ; I9 :¼ trM2 � Gð Þ trM3 � Gð Þ

ð3:222Þ

with nine independent material parameters ck in the orthotropic case.
In the case of transversal isotropy, the material isotropy is characterized by

only one direction tensor

K1 � M3 :¼ M ¼ e3e3 ð3:223Þ

(WLOG, the e3-direction has been chosen) such that (3.218) transforms to the
following expression

w ¼ w G;Mð Þ ¼ Ĉ
ð4Þ
� � � � GGð Þ; Ĉ

ð4Þ
:¼ J
ð8Þ
� � � � MMð Þ: ð3:224Þ

Expansion of the fourfold scalar product in (3.224) leads to a strain energy
function composed of five ‘‘mixed’’ basic invariants Ij (j = 1, 2, 3, 4, 5) with five
independent material parameters ck in the transversal isotropic case:

w ¼ w G;Mð Þ ¼
X

5

k¼1

ckIk G;Mð Þ

with I1 : ¼ tr2G; I2 :¼ trG2; I3 :¼ trGð Þ trM � Gð Þ
I4 : ¼ tr2M � G; I5 :¼ trM � G2:

ð3:225Þ

Generalized FUNG Model. Fung et al. (1979) proposed the following strain
energy function for biological soft tissue

wð�C; JÞ ¼ c2ðeQ � 1Þ þ f ðJÞ with f ðJÞ :¼ 1
D

�

1
2
ðJ2 � 1Þ � ln J

�

ð3:226Þ

where the exponent Q

Q :¼ �G � � A
ð4Þ
� � �G � A

ð4Þ
� � � � �G�Gð Þ with �G ¼ 1

2
�C � Ið Þ ð3:227Þ
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occurs in quadratic form in the modified right GREEN strain tensor �G. In (3.227) A
ð4Þ

is a fourth order (material) tensor (material tetrad) and, c2 and D are material
parameters.

HOLZAPFEL–WEIZSÄCKER-Model. According to Holzapfel and Weizsäcker
(1998), the strain energy function

w Cð Þ ¼ c1 CI � 3ð Þ þ c2 eQ � 1
� 	

ð3:228Þ

represents an extension of (3.226) in the form of an isotropic–anisotropic split and
is intended for modelling of arteries where the first term in (3.228) represents the
Neo–HOOKE term which is linear in the invariant CI and is used for description of
the isotropic material behaviour of elastin fibres. The second term represents the
anisotropic material behaviour of collagen fibres (cf. also (3.226) and (3.227)).

HOLZAPFEL–GASSER–OGDEN–Model. Especially for modelling of blood vessel
wall material, the following strain energy function was proposed by Gasser et al.
(2006)

w C;Hið Þ ¼ �w �C;Hið Þ þ f Jð Þ ð3:229Þ

with

�w �C;Hið Þ ¼ c1 �CI � 3ð Þ þ wf
�C;Hið Þ and f Jð Þ :¼ 1

D
1
2 J2 � 1ð Þ � ln J
 �

ð3:230Þ

where the isotropic term c1ð�CI � 3Þ (also given in (3.228) is intended to describe a
collagen-free ground matrix and the following term given in (3.230)

wf
�C;Hið Þ :¼ k1

2k2

X

N

i¼1

ek2 �E2
i � 1

� �

ð3:231Þ

with

�Ei :¼ Hi � ��C � 1 � j �CI � 3ð Þ þ 1� 3jð Þ �CIVi � 1ð Þ
Hi :¼ jI þ 1� 3jð ÞK0i ; CIVi :¼ K0i � ��C � trK0i � �C ; K0i :¼ a0i a0i

ð3:232Þ

is intended to define the anisotropic material behaviour of embedded collagen fibre
families (N B 3).

In addition, Hi represents a generalized structure tensor describing the fibre
dispersion with the direction dyad (direction tensor) K0i composed of the stan-
dardized principal fibre directions a0i (in the ICFG). CIVi is a ‘‘mixed’’ invariant
composed of �C and K0i and the D, ki (i = 1, 2) and j are material parameters where
the latter represents a measure for the fibre dispersion of one fibre family about the
principal direction. The fibres run parallel to the principal direction if j = 0
(perfect alignment) and are randomized about the principal direction if j = 1/3
(isotropic case). Hence, for the isotropic case (3.229) takes the following form
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w �Cð Þ ¼ c1
�CI � 3ð Þ þ k1

2k2
e

k2
9

�CI�3ð Þ2 � 1
h i

þ f Jð Þ: ð3:233Þ

Correlation between (3.226) and (3.233): In the isotropic case, the fourth

order material tensor A
ð4Þ

in (3.227) is replaced by the group of fourth order iso-
tropic tensors according to

A
ð4Þ
¼! J
ð4Þ
¼
X

3

j¼1

kj Ij

ð4Þ
ð3:234Þ

(the latter represents the special case for s = 4 and M = 3 according (3.213)1)
such that the isotropic variant of (3.227) reads

Q̂ :¼ �G � � J
ð4Þ
� � �G � J

ð4Þ
� � � � �G�Gð Þ with �G ¼ 1

2
ð�C � IÞ: ð3:235Þ

Multiplication in (3.235) leads to arbitrary second order tensors A due to

I1

ð4Þ
� � A ¼ A; I2

ð4Þ
� � A ¼ AT ; I3

ð4Þ
� � A ¼ trAð ÞI � IAI ð3:236Þ

and A ¼ AT as well as

A � � I1

ð4Þ
� � A ¼ A � � I2

ð4Þ
� � A ¼ A � �A � I � � A � Að Þ � trA2 ¼: IIA

A � � I3

ð4Þ
� � A ¼ trAð ÞA � �I � trAð Þ2� tr2A ¼ I2

A � A2
I

ð3:237Þ

where IA and IIA are referred to as the first two fundamental invariants of A.
Using A � �G and considering k1 þ k2 � l2 and k3 � l1 and (3.237), the

anisotropic Fung model (3.226) transforms to the isotropic case

ŵ �C; Jð Þ ¼ c2 eQ̂ � 1
� �

þ f Jð Þ with Q̂ ¼ l1tr2 �Gþ l2tr�G2 ¼ l1I2
�G þ l2II�G :

ð3:238Þ

Due to I�G � �GI ¼ tr�G ¼ 1
2 tr�C � 3ð Þ � 1

2
�CI � 3ð Þ and substituting

c2 �
k1

2k2
; l1 �

2
3

� �2

k2; l2 � 0; ð3:239Þ

it follows from (3.238) that the second term of the isotropic HOLZAPFEL–GASSER–
OGDEN–model (3.233), as a special case of the isotropic FUNG-model where the
effect of the second fundamental variant II�G :¼ trG2; is neglected!

Veronda and Westman used the following strain energy function (Veronda and
Westman 1970)
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w Cð Þ ¼ b2 CII � 3ð Þ þ b1 eb CI�3ð Þ � 1
h i

þ g CIIIð Þ ð3:240Þ

for modelling (cat) skin where bi (i = 0, 1, 2) and b are material constants. Note
that an analogy exists compared to the special case (3.233) of (3.229), apart from
the argument in the exponent in (3.233) being squared and the second invariant
appears in the linear term.

3.2.6.4 Constitutive Stress–Strain Relations of Hyperelastic Materials

Generally, for (hyper-) elastic materials, the CAUCHY stress tensor S can be
developed from the balance equation (3.150) q0

_D � JS � �D� _w ¼ 0 where, ini-
tially, the time derivative of the strain energy function _w is to be concretized.
Consideration of (3.171) leads to the substantial time derivative of w applying the
chain rule

_w ¼ dw

dt
¼ d

dt
w C X; tð Þ½ �f g ¼ ow

oC

� �T

� � _C: ð3:241Þ

Differentiation of the right CAUCHY strain tensor (3.64) with respect to time and
using the definition (3.139) of the rate of deformation tensor D leads to

_C ¼ d

dt
FT � F
� 	

¼ _F
T � Fþ FT � _F � 2FT � D � F: ð3:242Þ

Substituting (3.242) in (3.241) and using D = DT leads to

_w ¼ 2
ow

oC

� �T

� � FT � D � F � 2
ow

oC

� �T

�FT

" #

� �D � F

� 2
ow

oC

� �T

�FT

" #T

� � D � Fð ÞT� 2F � ow

oC
� �FT � D � 2F � ow

oC
� FT � �D:

ð3:243Þ

Substituting (3.243) in (3.150) and factoring out leads to

JS� 2F � ow

oC
� FT

� �

� �D ¼ 0: ð3:244Þ

From (3.244) and with an appropriate choice of D, the most general structure of
the constitutive equation of the CAUCHY stress tensor S (Green and Adkins 1970)
results (3.245)1. Furthermore, using (3.96) and (3.98), the first and second PIOLA–
KIRCHHOFF stress tensor for non-linear hyperelastic anisotropic materials results
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(3.245)2 and (3.245)3 (regarding the transformation in (3.245)3, the following

relation based on (3.69) is noticeable: o=oC ¼ 1=2ð Þ I1

ð4Þ
� � o=oGð Þ � 1=2ð Þ o=oGð Þ)

S ¼ 2J�1F � ow Cð Þ
oC

� FT ; PI ¼ JF�1 � S ¼ 2
ow Cð Þ

oC
� FT

PII ¼ JF�1 � S � F�T ¼ 2
ow Cð Þ

oC
� ow Gð Þ

oG
:

ð3:245Þ

Isotropic Materials - Representations in the Form of Invariants. The partial
derivative qw/qC occurring (3.245) follows, using (3.181) together with the chain
rule from

ow Cð Þ
oC

¼ ow CI ;CII ;CIIIð Þ
oC

¼ ow

oCI

oCI

oC
þ ow

oCII

oCII

oC
þ ow

oCIII

oCIII

oC
: ð3:246Þ

Furthermore, the three partial derivations qCi/qC (i = I, II, III) occurring in
(3.246) are obtained using (3.180) based on the GÂTEAUX variation as follows

oCI

oC
¼ I;

oCII

oC
¼ CII � C

oCIII

oC
¼ CIII � CIC þ C2 ¼ CIIIC

�1:

ð3:247Þ

Substituting (3.247) in (3.246) finally leads to

ow Cð Þ
oC

¼ CIII
ow

oCIII
C�1 þ ow

oCI
þ CI

ow

oCII

� �

I � ow

oCII
C ð3:248Þ

establishing the structures of the three stress tensors (3.245).
Specifically, substituting (3.248) in (3.245)1 and noting that F � I � FT ¼ F�

FT ¼ B; F � C � FT ¼ F � FT � F � FT ¼ B2 and F � C�1 � FT ¼ F � FT � F
� 	�1�

FT ¼ I as well as using the equality of the invariants C and B, namely Ci ¼
Bi i ¼ 1; 2; 3ð Þ (this can be inferred from CI ¼ trC ¼ trF � FT ¼ trFT � F ¼
trB ¼ BI etc.), the dependence of S on the left CAUCHY strain tensor can be derived
to

S ¼ gðBÞ ¼ 2J�1 BIII
ow

oBIII
I þ ow

oBI
þ BI

ow

oBII

� �

B� ow

oBII
B2

� �

: ð3:249Þ

Equations (3.245)–(3.248) and (3.249) provide the relevant constitutive stress–
strain equations of non-linear hyperelastic isotropic materials, where the specific
strain energy functions w can readily be substituted.

Isotropic Materials - Representations in the Form of Principal Stretches.
The partial derivative qw/qC occurring in (3.245) follows using (3.185) together
with the chain rule from
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ow Cð Þ
oC

¼ ow k1; k2; k3ð Þ
oC

¼ ow

ok1

ok1

oC
þ ow

ok2

ok2

oC
þ ow

ok3

ok3

oC
¼
X

3

i¼1

ow

oki

oki

oC
ð3:250Þ

where the partial derivations qk/qC can be derived using the GÂTEAUX variation to
(Silber and Steinwender 2005)

oki Cð Þ
oC

¼ 1
2ki Cð Þmimi i ¼ 1; 2; 3ð Þ i not summed!ð Þ ð3:251Þ

and, substituting (3.251) in (3.250) finally yields

ow Cð Þ
oC

¼
X

3

i¼1

1
2ki Cð Þ

ow

oki
mimi: ð3:252Þ

Together with (3.252) and (3.245), the CAUCHY stress tensor and the first and
second PIOLA–KIRCHHOFF stress tensors derive to

S ¼ J�1
X

3

i¼1

ki
ow

oki
nini mit J ¼ k1k2k3

PI ¼
X

3

i¼1

ow

oki
mini; PII ¼

X

3

i¼1

1
ki

ow

oki
mimi:

ð3:253Þ

Split into Deviatoric (Isochoric) and Volumetric Parts. With respect to the
theory outlined in Sect. 3.2.6.5 regarding (linear-) viscoelastic materials valid for
finite strains, a split into deviatoric and volumetric parts is presented using the
example of the second PIOLA–KIRCHHOFF stress tensor PII and the Kirchhoff stress
tensor s, respectively (a transformation to other stress measures can be done using
(3.96), (3.98) and (3.99). Note, however, that splitting the material equations may
lead to nonphysical effects as outlined in Eipper (1998), especially when using the
example of uniaxial compressing testing at higher volumetric strain!

The strain energy function w according to (3.194) is divided into a deviatoric
part �w �Cð Þ and a volumetric part f(J). According to (3.245)3 and using the chain
rule, the split of the second PIOLA–KIRCHHOFF stress tensor yields

PII ¼ PII
J þ PII ð3:254Þ

with the volumetric and the deviatoric parts

PII
J ¼ 2

of Jð Þ
oC
¼ 2

of Jð Þ
oJ

oJ

oC
; �P

II ¼ 2
o�w �Cð Þ

oC
¼ 2

o�w �Cð Þ
o �C

� � o
�C

oC
: ð3:255Þ

From (3.192)1 results o �C=oC ¼ o J�2=3C
� 	

=oC ¼ C o J�2=3
� 	

=oC
 �

þ J�2=3

oC=oC such that using J Cð Þ ¼ C1=2
III and oC=oC ¼ I1

ð4Þ
where I1

ð4Þ
is the fourth order

identity tensor, together with (3.247)3 and the GÂTEAUX differential, the following
derivatives from (3.255) are derived
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oJ

oC
¼ 1

2
JC�1;

o �C

oC
¼ J�2=3 PT

ð4Þ
: ð3:256Þ

In (3.256)3 P
ð4Þ

is a (fourth order) material deviator operator which generates the
material deviatoric part �A from double scalar multiplication with a second order

tensor A (this operation is sometimes referred to as DEV 
ð Þ � P
ð4Þ
� � 
ð Þ by other

authors). Since left double scalar multiplication of P
ð4Þ

with C and right double
scalar multiplication with C�1 yields zero (a deviator is trace-free), the following
relations are obtained

P
ð4Þ

:¼ I1

ð4Þ
� 1

3
C�1C with I1

ð4Þ
� � A ¼ A and C�1C � �A ¼ trC � Að ÞC�1

P
ð4Þ
� � A � DEVA ¼ �A � A� 1

3
trC � Að ÞC�1

with C � � P
ð4Þ
¼ P
ð4Þ
� � C�1 ¼ 0 and P

ð4Þ
� � P
ð4Þ
¼ P
ð4Þ
: ð3:257Þ

Substituting (3.256) in (3.255) and using A � �PT
ð4Þ
¼ P
ð4Þ
� � AT for arbitrary sec-

ond order tensors A yields the following terms of the constitutive equation (3.254)
for the second PIOLA–KIRCHHOFF stress tensor

�PII
J ¼ 2

of Jð Þ
oC
¼ JpC�1 with p :¼ of Jð Þ

oJ

�PII ¼ 2
o�w �Cð Þ

oC
¼ J�2=3 P

ð4Þ
� � ~PII with ~PII :¼ 2

o�w �Cð Þ
o �C

ð3:258Þ

where the quantity ~PII in (3.258)3 is referred to as a fictitious second PIOLA–
KIRCHHOFF stress tensor. The respective parts of the Kirchhoff stress tensor follow
from substitution of (3.254) and (3.258) in (3.99) (to distinguish between material
and spatial deviator, the deviator of s has been modified using a circumflex!)
which preliminarily leads to

s ¼ F � PII � FT ¼ F � PII
J þ �PII

� 	

� FT ¼ sJ þ ŝ ð3:259Þ

with

sJ ¼ F � PII
J � FT ¼ JpF � C�1 � FT

ŝ ¼ F � �PII � FT ¼ J�2=3F � P
ð4Þ
� � ~PII

� �

� FT :
ð3:260Þ

For further advancement, it is reasonable to introduce a fourth order spatial

deviator operator p
ð4Þ

(analogue to (3.257)) which generates the spatial deviatoric
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part Â from double scalar multiplication with a second order tensor A (this

operation is sometimes referred to as dev 
ð Þ � p
ð4Þ
� � 
ð Þ by other authors) where

left and right double scalar multiplication of p
ð4Þ

with I yields zero (a deviator is
trace-free):

p
ð4Þ

:¼ I1

ð4Þ
� 1

3
II with I1

ð4Þ
� � A ¼ A and II � �A ¼ trAð ÞI

p
ð4Þ
� � A � devA ¼ Â � A� 1

3
trAð ÞI

with I � � p
ð4Þ
¼ p
ð4Þ
� � I ¼ 0 and p

ð4Þ
� � p
ð4Þ
¼ p
ð4Þ
:

ð3:261Þ

Further, using trC � A ¼ trFT � F � A � trF � A � FT and (3.275) and (3.261), the
following expression is obtained

F � P
ð4Þ
� � A

� �

� FT ¼ p
ð4Þ
� � F � A � FT
� 	

ð3:262Þ

which can be rewritten using (3.260)2 and (3.190) to

ŝ ¼ J�
2
3F � P

ð4Þ
� � ~PII

� �

� FT ¼ J�
2
3 p
ð4Þ
� � F � ~PII � FT
� 	

¼ p
ð4Þ
� � J�

1
3F

|ffl{zffl}

�F

�~PII � J�1
3FT

|fflffl{zfflffl}

�F
T

0

@

1

A

� p
ð4Þ
� � �F � ~PII � �F

T
� �

ð3:263Þ

Together with (3.263) and F � C�1 � FT ¼ I, the volumetric and deviatoric part
of the KIRCHHOFF stress tensor yield

sJ ¼ JpI mit p :¼ of Jð Þ
oJ

ŝ ¼ p
ð4Þ
� � ~s mit ~s :¼ �F � ~PII � �FT ¼ 2�F � o�w �Cð Þ

o�C
� �FT :

ð3:264Þ

Spectral Representation. Using (3.183), (3.191) and (3.192), the modified
right CAUCHY strain tensor reads

�C ¼ J�2=3C ¼ J�2=3
X

3

i¼1

k2
i mimi ¼

X

3

i¼1

J�1=3ki

� �2
mimi ¼

X

3

i¼1

�k2
i mimi ð3:265Þ

where the deviatoric part of w can be written as �w �Cð Þ ¼ �w �k1
�Cð Þ; �k2

�Cð Þ; �k3
�Cð Þ

 �

(analogue to (3.185)). Using the chain rule (3.266) is obtained

o�w �Cð Þ
o�C

¼
X

3

i¼1

o�w �Cð Þ
o�ki

o�ki

o�C
: ð3:266Þ
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The second product term in (3.266) is given by (analogue to (3.251))

o�ki
�Cð Þ

o�C
¼ 1

2�ki
�Cð Þ

mimi ði ¼ 1; 2; 3Þ ði not summed!Þ: ð3:267Þ

and, substituting (3.267) in (3.266) and further in (3.258) leads to the fictitious
second PIOLA–KIRCHHOFF stress tensor

~PII :¼ 2
o�w �Cð Þ

o�C
¼
X

3

i¼1

1
�ki

o�w

o�ki
mimi: ð3:268Þ

Substitution of (3.268) in (3.258) as well as in (3.264) and considering (3.183)
finally leads to the volumetric and deviatoric part of the material equation of the
second PIOLA–KIRCHHOFF stress tensor in spectral form

PII
J ¼ Jp

X

3

i¼1

k�2
i mimi mit p :¼ of Jð Þ

oJ

�PII ¼ J�2=3 P
ð4Þ
� � ~PII mit ~PII ¼

P

3

i¼1

1
�ki

o�w
o�ki

mimi

ð3:269Þ

and the KIRCHHOFF stress tensor (note that I ¼ nini)

sJ ¼ Jpnini mit p :¼ of Jð Þ
oJ

ŝ ¼ p
ð4Þ
� � ~s mit ~s ¼

P

3

i¼1

�ki
o�w
o�ki

nini

ð3:270Þ

Slightly Compressible Materials. With regard to (3.208), (3.261), (3.270),
I ¼ nini and I � �nini ¼ ni � ni ¼ 1, finally, the following constitutive equations in
the form of the volumetric and deviatoric part of the KIRCHHOFF stress tensor for
slightly compressible hyperelastic materials are obtained

sJ ¼ 2
X

3

i¼1

X

N

k¼1

k

Dk
J J � 1ð Þ2k�1nini ¼ 2

X

N

k¼1

k

Dk
J J � 1ð Þ2k�1I

ŝ ¼ p
ð4Þ
� � ~s with ~s ¼ 2

X

3

i¼1

X

N

k¼1

lk

ak

�kak
i nini or

ŝ ¼ 2
X

3

i¼1

X

N

k¼1

lk

ak

�kak
i �

1
3

X

3

j¼1

�kak
j

 !

nini � 2
X

3

i¼1

X

N

k¼1

lk

ak

�kak
i nini �

2
3

X

N

k¼1

X

3

j¼1

lk

ak

�kak
j I

 !

ð3:271Þ

respectively.
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Substituting (3.271) in (3.259) leads to the coupled form (which could have
been obtained alternatively by using (3.99) and substituting (3.191) in (3.208) and
differentiation with respect to ki analogue to (3.253)1)

s ¼ 2
X

3

i¼1

X

N

k¼1

lk

ak

�kak
i �

1
3

X

3

j¼1

�kak
j

 !

þ k

Dk
J J � 1ð Þ2k�1

" #

nini

� 2
X

3

i¼1

X

N

k¼1

lk

ak
J�

ak
3 kak

i �
1
3

X

3

j¼1

kak
j

 !

þ k

Dk
J J � 1ð Þ2k�1

" #

nini:

ð3:272Þ

Regarding (3.272), the initial shear and bulk modulus l0 and K0 as well as the
relations between POISSON’S ratio m and l0 and K0 and D1 are given by (Böl and
Reese 2008)

l0 ¼:
X

N

i¼1

li ; K0 ¼ 2D�1
1 ; m ¼ 3K0=l0�2

6K0=l0þ2
; D1 ¼ 3

l0

1�2m
1þm : ð3:273Þ

Highly Compressible Materials. With regard to (3.99), (3.209) and (3.253)1,
the following final constitutive equation for the KIRCHHOFF stress tensor for highly
compressible hyperelastic materials in terms of the principal stretch is obtained
(Silber and Steinwender 2005)

s ¼ 2
X

3

i¼1

X

N

k¼1

lk

ak
kak

i � J�akbk
� 	

� �

nini: ð3:274Þ

Regarding (3.274), the initial shear and bulk modulus l0 and K0 as well as the
relations between POISSON’S ratio m and the parameters bi denote

l0 :¼
X

N

i¼1

li ; K0 :¼
PN

i¼1 2ð13þ biÞli ; mi ¼ bi
1þ2bi

; bi ¼ mi
1�2mi

: ð3:275Þ

For the particular case bi = b = const (i = 1, 2,…., N), m is the classical
POISSON’S ratio.

Anisotropic Materials - Polynomial Representation. With help of the
GÂTEAUX variation applied on (3.216)

dwG ¼ dw Gþ eZ;K1;K2; ::::KNð Þ½ �=def ge¼0¼
!

ow G;K1;K2; ::::KNð Þ=oG½ �T � � Z;

the second PIOLA–KIRCHHOFF stress tensor of tensor-linear materials with arbitrary
anisotropic properties can be obtained (Silber 1988):

PII ¼ ow G;K1;K2; ::::KNð Þ
oG

¼ C
ð4Þ
� � G ð3:276Þ

3.2 Continuum Mechanics 85



where the fourth order material tensor (material tetrad) C
ð4Þ

C
ð4Þ

:¼ S
ð8Þ
� � � � Ĉ

ð4Þ
mit S

ð8Þ
:¼ 1

4
I1

ð8Þ
þ I2

ð8Þ
þ I10

ð8Þ
þ I53

ð8Þ
þ I54

ð8Þ
þ I68

ð8Þ
þ I69

ð8Þ
þ I89

ð8Þ� �

ð3:277Þ

results from the material tensor Ĉ
ð4Þ

defined in (3.216)2 by a pre-operation with the

eighth order symmetry operator S
ð8Þ

. The latter ensures the symmetry of both
G and PII.

For orthotropic materials, considering (3.221)2, the material tensor (3.277)
transforms to the following fourth order tensor function of the three direction
tensors Mi (i = 1, 2, 3):

C
ð4Þ

: ¼ l1II þ l2 I1

ð4Þ
þ I2

ð4Þ� �

þ
X

3

i¼1

liþ2 IMi þMiIð Þ

þ
X

3

i¼1

liþ5 I2

ð6Þ
þ I3

ð6Þ
þ I11

ð6Þ
þ I12

ð6Þ� �

� �Mi þ
X

3

i¼1

X

3

j¼1

lij MiMj þMjMi

� 	

þ
X

3

i¼1

X

3

j¼1

mij I2

ð6Þ
þ I14

ð6Þ� �

� � � MiMj

� 	

þ I56

ð8Þ
þ I83

ð8Þ� �

� � � � MiMj

� 	

� �

ð3:278Þ

where the underlined term in (3.278) indicates the particular case of isotropy.
Substituting (3.278) in (3.276) leads to the equivalent representations of the

second PIOLA–KIRCHHOFF stress tensor as follows (the isotropic part is underlined)

PII ¼ l1 trGð ÞI þ 2l2Gþ
X

3

i¼1

liþ2 tr Mi � Gð ÞI þ trGð ÞMi½ �

þ
X

3

i¼1

X

3

j¼1

lij tr Mi � Gð ÞMj þ tr Mj � G
� 	

Mi

 �

þ 2
X

3

i¼1

liþ5 Mi � Gþ G �Mið Þ

þ 2
X

3

i¼1

mij Mi � G �Mj þMj � G �Mi

� 	

ð3:279Þ

Together with (3.220)2, the following identities hold
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2G � I � G � I þ I � G � I ¼ 2
X

3

i¼1

X

3

j¼1

Mi � G �Mj þMj � G �Mi

� 	

trGð ÞI ¼ trI � Gð ÞI ¼
X

3

i¼1

X

3

j¼1

trMi � Gð ÞMj; trMi � Gð ÞI ¼
X

3

j¼1

trMi � Gð ÞMj

trGð ÞMi ¼ trI � Gð ÞMi ¼
X

3

j¼1

trMj � G
� 	

Mi; Mi � G �Mi ¼ trMi � Gð ÞMi

Mi � G ¼ Mi � G � I ¼
X

3

j¼1

Mi � G �Mj; G �Mi ¼ I � G �Mi ¼
X

3

j¼1

Mj � G �Mi

ð3:280Þ

whereby (3.279) can be transformed in the following form with nine independent
material coefficients ui

PII ¼ u1trM1 � Gþ u2trM2 � Gþ u3trM3 � Gð ÞM1

þ u2trM1 � Gþ u4trM2 � Gþ u5trM3 � Gð ÞM2

þ u3trM1 � Gþ u5trM2 � Gþ u6trM3 � Gð ÞM3

þ u7 M1 � G �M2 þM2 � G �M1ð Þ þ u8 M1 � G �M3 þM3 � G �M1ð Þ
þ u9 M2 � G �M3 þM3 � G �M2ð Þ:

ð3:281Þ

The material equation (3.281) differs from the form presented in Boehler (1975,
1979) by the latter three terms in parentheses, which are identified by Mi � Gþ
G �Mi (i = 1, 2, 3). They can, however, be transformed into each other employing
(3.280)4–(3.280)7.

For transversal isotropic materials, the material tensor (3.277) converts to the
following fourth order tensor function of the single direction tensor M using
(3.224)2

C
ð4Þ

:¼l1II þ l2 I1

ð4Þ
þ I2

ð4Þ� �

þ l3 IM þMIð Þ þ l4MM

þ l5 I2

ð6Þ
þ I3

ð6Þ
þ I11

ð6Þ
þ I12

ð6Þ� �

� �M:

ð3:282Þ

In (3.282), the underlined term represents the particular case of isotropy.
Substituting (3.282) in (3.276) leads to the second PIOLA–KIRCHHOFF stress tensor
with five independent material coefficients ui (the isotropic part is underlined)

PII ¼ u1trGþ u2trM � G
� �

I

þ u2trGþ u3trM � Gð ÞMþu4Gþ u5 M � Gþ G �Mð Þ:
ð3:283Þ
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Anisotropic HOOKE’s Law. In identifying material parameters of anisotropic
(aircraft seat) fabric materials in Sect. 4.2.2.2, the HOOKE model for orthotropic
materials is shown to be applicable and is thus treated as a special case. Equations
(3.98) and (3.276) provide a relation between the CAUCHY stress tensor and the
second PIOLA–KIRCHHOFF stress tensor in the following form

S ¼ J�1F � PII � FT ¼ J�1F � C
ð4Þ
� � G

� �

� FT : ð3:284Þ

Considering (3.57)1 and G ¼ H þHT þHT �H
� 	

=2 according to (3.284) leads
to

S ¼ 1
2

1
det I þHð Þ I þHð Þ � C

ð4Þ
� � H þHT þHT �H
� 	

� �

� I þHð ÞT : ð3:285Þ

Factoring out the terms in (3.285) yields

Ŝ ¼ 1
2

1
det I þHð Þ C

ð4Þ
� � H þHT þHT �H
� 	

� �

þ O HT �H
� 	

ð3:286Þ

where terms of higher order in the displacement gradient H are summed up by the
term O HT �H

� 	

.
A consequent geometrical linearization (also shown at the end of Sect. 3.2.3.6)

includes the elimination of the quadratic term HT �H in square brackets in (3.286)
as well as reducing the denominator to det I ¼ 1 (this can be realized by writing
det I þHð Þ in coordinate notation). Considering (3.77), the most general strictly-
linear relation between the CAUCHY stress tensor S and the deformator E for
arbitrary anisotropic material behaviour results in:

S ¼ C
ð4Þ
� � E: ð3:287Þ

Based on the approach outlined following Eq. (3.276), this constitutive equation
structure for orthotropy between S and E results from (3.287) (analogue to (3.281))

S ¼ u1trM1 � Eþ u2trM2 � Eþ u3trM3 � Eð ÞM1

þ u2trM1 � Eþ u4trM2 � Eþ u5trM3 � Eð ÞM2

þ u3trM1 � Eþ u5trM2 � Eþ u6trM3 � Eð ÞM3

þ u7 M1 � E �M2 þM2 � E �M1ð Þ þ u8 M1 � E �M3 þM3 � E �M1ð Þ
þ u9 M2 � E �M3 þM3 � E �M2ð Þ: ð3:288Þ

Considering (3.78), (3.219) and (3.220) as well as trMa � E ¼ eaa; Ma � E �
Mb ¼ eabeaeb (a and b not summed!), rij ¼ rji and eij ¼ eji, Eq. (3.288) leads to
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S ¼ u1e11 þ u2e22 þ u3e33ð Þe1e1 þ u2e11 þ u4e22 þ u5e33ð Þe2e2

þ u3e11 þ u5e22 þ u6e33ð Þe3e3

þ u7e12 e1e2 þ e2e1ð Þ þ u8e13 e1e3 þ e3e1ð Þ þ u9e23 e2e3 þ e3e2ð Þ:
ð3:289Þ

and from (3.289) by comparison of coordinates, the six equations of HOOKE’S law
for orthotropic materials in coordinate notation follow:

r11 ¼ u1e11 þ u2e22 þ u3e33

r22 ¼ u2e11 þ u4e22 þ u5e33

r33 ¼ u3e11 þ u5e22 þ u6e33

r12 ¼ u9e12; r13 ¼ u8e13; r23 ¼ u7e23:

ð3:290Þ

Transforming (3.290) into the form r ¼ P � e with the VOIGT 6� 1 vectors
e :¼ ðe11; e22; e33; e23; e13; e12Þ and r :¼ ðr11; r22; r33; r23; r13; r12Þ as well as the
symmetric stiffness matrix P

P :¼

u1 u2 u3 0 0 0
u2 u4 u5 0 0 0
u3 u5 u6 0 0 0
0 0 0 u7 0 0
0 0 0 0 u8 0
0 0 0 0 0 u9

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

; ð3:291Þ

inverting the flexibility matrix for the orthotropic case (cf. (Altenbach and
Altenbach 1994))

P�1 :¼

1=E1 �m12=E1 �m13=E1 0 0 0
�m12=E1 1=E2 �m23=E2 0 0 0
�m13=E1 �m23=E2 1=E3 0 0 0

0 0 0 2=G23 0 0
0 0 0 0 2=G31 0
0 0 0 0 0 2=G12

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

ð3:292Þ

and comparing then the coordinates with (3.291) leads to the following nine
independent material coefficients

u1 � �
E2

1 E2 � m2
23E3

� 	

N
; u2 � �

E1E2 m12E2 þ m13m23E3ð Þ
N

; u3 � �
E1E2E3 m13 þ m12m23ð Þ

N

u4 � �
E2

2 E1 � m2
13E3

� 	

N
; u5 � �

E2E3 m23E1 þ m12m13E2ð Þ
N ; u6 � �

E2E3 E1 � m2
12E2

� 	

N
u7 � 2G12; u8 � 2G31; u9 � 2G23

N � �E2 E1 � m2
12E2

� 	

þ m13E2E3 m13 þ m12m23ð Þ þ m23E3 m23E1 þ m12m13E2ð Þ
ð3:293Þ
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where the Ei are the moduli of elasticity and the Gij are the shear moduli and the mij

are the POISSON ratios. Similarly, this approach applies for arbitrary anisotropies
such as monotropy, transversal isotropy etc.

In the case of plane state stress where w.l.o.g, both orthonormal basis vectors e1

and e2 are situated in-plane and a change in thickness is neglected e33 ¼ e23 ¼
e13 ¼ 0; (3.290) degenerates to

r11 ¼ u1e11 þ u2e22 ; r22 ¼u2e11 þ u4e22; r12 ¼ r21 ¼ u9e12 ð3:294Þ

with the four material coefficients resulting from (3.290) (the moduli of elasticity
and the bulk moduli and the POISSON ratios with index 3 vanish in this process):

u1 �
E2

1

N̂
; u2 � m12

E1E2

N̂
; u4 �

E1E2

N̂
; u9 � 2G12

u3 ¼ u5 ¼ u6 ¼ u7 ¼ u8 ¼ 0; N̂ :¼ E1 � m2
12E2 ð3:295Þ

Anisotropic Materials - HOLZAPFEL–GASSER–OGDEN Model. Based on the
strain energy function of the HOLZAPFEL–GASSER–OGDEN model (3.230)2, the vol-
umetric part of the KIRCHHOFF stress tensors (3.264)1 derives to

sJ ¼
1
D

J2 � 1
� 	

I: ð3:296Þ

Considering the partial derivative derived using (3.230)1–(3.232)

o�w

o �C
¼ �U1I þ j 1� 3jð Þk1

X

N

i¼1

�U2iK0i

with

�U1 ¼ �U1
�C;Hið Þ :¼ c1 þ j2k1

X

N

i¼1

�CI � 3þ 1� 3j
j

�CIVi � 1ð Þ
� �

ek2 �E2
i

�U2i ¼ �U2i
�C;Hið Þ :¼ �CI � 3þ 1� 3j

j
�CIVi � 1ð Þ

� �

ek2 �E2
i

ð3:297Þ

and using (3.264)3, the deviatoric part of the KIRCHHOFF stress tensors is obtained:

ŝ ¼ 2 p
ð4Þ
� � �U1

�Bþ j 1� 3jð Þk1

X

N

i¼1

�U2i
�F � K0i � �FT

" #

ð3:298Þ

where �B :¼ �F � �FT is the modified left CAUCHY strain tensor.

In the isotropic case with j ¼ 1=3 and considering the definitions (3.232) and
(3.297), (3.298) transforms into the following constitutive equation, which
depends only on �B (note that �CI ¼ �BI)
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ŝ ¼ 2 p
ð4Þ
� � c1 þ

k1

9
�BI � 3ð Þe

k2
9

�BI�3ð Þ2
� �

�B

� �

� 2 c1 þ
k1

9
�BI � 3ð Þe

k2
9

�BI�3ð Þ2
� �

p
ð4Þ
� � �B

ð3:299Þ

where p
ð4Þ

is given in (3.261). With regard to (3.259) the combination of (3.296) and
(3.299) leads to the complete constitutive equation for the KIRCHHOFF stress

s ¼ 1
D

J2 � 1
� 	

I þ 2 c1 þ
k1

9
�BI � 3ð Þe

k2
9

�BI�3ð Þ2
� �

p
ð4Þ
� � �B ð3:300Þ

3.2.6.5 Constitutive Stress–Strain Equations for Linear Viscoelasticity
at Finite Deformations

Representing linear viscoelasticity valid for finite strains follows an approach
given by Simo (1987) and is limited, insofar that the material equations imple-
mented in ABAQUS FE-code are used to model the viscoelastic material behaviour
of human soft tissues and polymeric soft foams. The implemented theory refers to
the rheological POYNTING–THOMSON-model (sometimes also referred to as standard
solid) which consists of a HOOKE body and a MAXWELL body in parallel, cf.
Fig. 3.24.

In the small strain linear viscoelastic case, the following set of equations results
for the one-dimensional model (indices ‘‘H’’ and ‘‘M’’ refer to ‘‘HOOKE’’ and
‘‘MAXWELL’’)

r ¼ rH þ rM ; e ¼ eH ¼ eM

rH ¼ E1eH

_rM þ
E

g
rM ¼ E_e:

ð3:301Þ

Equation (3.301)1 represents the equilibrium state and (3.301)2 is the compat-
ibility condition. Equations (3.301)3 and (3.301)4 are the partial constitutive
equations for the HOOKE and the MAXWELL model, respectively. In (3.301)1, rH

Fig. 3.24 a Rheological POYNTING–THOMSON model, b creep behavior and c relaxation behavior

3.2 Continuum Mechanics 91



may be interpreted as equilibrium stress and rM as the dissipative part of the total
stress r and equation (3.301)4 may be interpreted as an evolution equation of rM as
long as rM is considered an internal variable. At constant stress, the POYNTING–
THOMSON model responds spontaneously elastically and then creeps (asymptoti-
cally) towards a strain value, cf. Fig. 3.24b. Similarly, at constant strain, the stress
relaxes towards a final stress value, cf. Fig. 3.24c.

Representation for Second PIOLA–KIRCHHOFF Stress Tensor. For the previ-
ously introduced class of materials, generally, a potential for the stress in form of a
strain energy function w is postulated which, according to the one-dimensional
rheological model (cf. Fig. 3.24) and in extension to the hyperelastic case (3.171),
is formulated as a function of a strain tensor (C is used instead of G) and further
second order tensors Ck (k = 1,2,….,n) [cf. e.g. (Simo 1987; Govindjee and Simo
1992; Holzapfel et al. 1996)]

w ¼ w C;C1;C2; :::;Cnð Þ: ð3:302Þ

The Ck are intended to represent the dissipative effects of the viscoelastic
material and are referred to as (non-observable) internal variables, hidden vari-
ables or history variables in contrast to external (measurable) variables such as F.

In the case of dissipative media and isothermal processes, the CLAUSIUS–DUHEM-
inequality (3.149), q0

_D � JS � �D� _w� 0, must be satisfied such that, considering
the equality of conjugated stress and strain measures JS � �D ¼ PII � � _G and 2 _G ¼
_C and using (3.302), it follows

1
2

PII � ow C;C1;C2; :::;Cnð Þ
oC

� �

� � _C �
X

n

k¼1

ow C;C1;C2; :::;Cnð Þ
oCk

� � _Ck � 0:

ð3:303Þ

From (3.303) and the arbitrary choice of the tensor _C, the formulation for the
second PIOLA–KIRCHHOFF stress tensor PII and the residual inequality for non-
negative internal dissipation or local entropy production reads

PII ¼ 2
ow C;C1;C2; :::;Cnð Þ

oC
and �

X

n

k¼1

ow C;C1;C2; :::;Cnð Þ
oCk

� � _Ck � 0

ð3:304Þ

Following Simo (1987), the decoupled strain energy function with an elastic
part w0, cf. (3.194), and a dissipative part wd is introduced as follows with a
residual internal variable C1 : C

w C;Cð Þ :¼ w0 C; Jð Þ þ wd C;Cð Þ

with w0 C; Jð Þ :¼ �w0
�Cð Þ þ f0 Jð Þ and wd C;Cð Þ :¼ � 1

2
C � � �C � Ið Þ þ ŵd Cð Þ

ð3:305Þ

92 3 Fundamentals



where, according to (3.195), the following properties must be satisfied

f0 J ¼ 1ð Þ ¼ 0; �w0
�C ¼ Ið Þ ¼ 0 wd

�C ¼ I;C ¼ Ið Þ ¼ 0: ð3:306Þ

In (3.305), w0ðC; JÞ is the initial strain energy function with the deviatoric (or
isochoric) elastic part �w0

�Cð Þ and the volumetric elastic part f0ðJÞ in the equilib-
rium state of the material and wdðC;CÞ is the dissipative part of the strain energy
function w, extended for viscoelastic materials. Considering (3.305)1, equation
(3.304) transforms into

PII ¼ 2
ow C;Cð Þ

oC
and � ow C;Cð Þ

oC
� � _C� 0: ð3:307Þ

Note: In particular the split into deviatoric and volumetric parts is analogous to
that regarding hyperelastic materials, starting with equation (3.254). The entities
regarding equilibrium elasticity introduced in the ‘hyperelastic materials-’ section
are additionally indexed with ‘‘0’’!

Considering (3.305) and following the outlines for the one-dimensional form
(3.301)1, the stress tensor (3.307)1 can be divided into an equilibrium elasticity
part PII

0 and a dissipative part PII
d where PII

0 can be further divided into a volumetric
and isochoric part PII

0J and PII
0 such that employing the chain rule

ow0ðC; JÞ=oC ¼ o �w0ð�CÞ=oC þ of0ðJÞ=o �w0ð�CÞ
¼ ½o�w0ð�CÞ=o�C� � � � ½o�C=oC� þ ½of0ðJÞ=oJ�ðoJ=oCÞ

all parts can be written as follows

PII ¼ PII
0 þ PII

d ¼ PII
0J þ PII

0 þ PII
d ð3:308Þ

with

PII
0 ¼ 2

ow0 C; Jð Þ
oC

:¼ PII
0J þ PII

0 and PII
d ¼ 2

owd C;Cð Þ
oC

ð3:309Þ

and

PII
0J ¼ 2

of0 Jð Þ
oC

¼ 2
of0 Jð Þ

oJ

oJ

oC
; �PII

0 ¼ 2
o�w0

�Cð Þ
oC

¼ 2
o�w0

�Cð Þ
o �C

� � o
�C

oC

PII
d ¼ �

o C � � �C � Ið Þ½ �
oC

¼ � o C � � �C � Ið Þ½ �
o�C

� � o
�C

oC
:

ð3:310Þ

With the expression

o C � � �C � Ið Þ½ �
o �C

¼ C ð3:311Þ

as well as (3.256) and (3.257), the relations (3.310) and thus all three terms of
constitutive equation (3.308), transform to
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PII
0J ¼ Jp0C�1 p0 :¼ of0 Jð Þ

oJ

PII
0 ¼ J�2=3 P

ð4Þ
� � ~PII

0 with ~PII
0 :¼ 2

o�w0
�Cð Þ

o �C

PII
d ¼ �

oC � � �C � Ið Þ
oC

¼ �J�2=3 P
ð4Þ
� � C

ð3:312Þ

Substituting (3.312) in (3.308)1, it yields

PII ¼ PII
0J þ �P

II
0 þ PII

d ¼ Jp0C�1 þ J�2=3 P
ð4Þ
� � ~PII

0 � C
� 	

: ð3:313Þ

In order to determine the inner variable C(t) in (3.313), in (Simo 1987), the
following evolution equation is introduced

_Cþ 1
s
C ¼ 1� c

s
P
ð4Þ
� � ~PII

0 with C t ¼ 0ð Þ ¼ 0 ð3:314Þ

where s is the relaxation time and c is a constant (for c = 0 and c = 1, respec-
tively, the special cases of a MAXWELL fluid and an elastic solid ensue).

Based on the previous, it is assumed that the viscous behaviour of the material
and the inner variable C characterizing the dissipative effects are determined
exclusively by the deviatoric part of the strain energy function �w0

�Cð Þ (cf.
(3.312)3). The solution of the inhomogenous first order differential equation for
C(t) in the (current) time (3.314) can be found by variation of constants using the
principle of determinism (consideration of all the states including the remote past
to the present time, cf. Sect. 3.2.6.1) as follows

C tð Þ ¼
Z

t

t0¼0

1� c
s

e�
t�t0
s P
ð4Þ

t0ð Þ � �~PII
0 t0ð Þdt0 ð3:315Þ

Substituting (3.315) in (3.313) leads to the material equation for the second
PIOLA–KIRCHHOFF stress tensor for linear-viscoelastic materials at finite strains

PII tð Þ ¼ Jp0C�1 þ J�2=3= ~PII
0

� �

with p0 :¼ df0 Jð Þ
dJ

and = ~PII
0

� �

:¼ P
ð4Þ

tð Þ � � ~PII
0 tð Þ �

Z

t

t0¼0

1� c
s

e�
t�t0
s P
ð4Þ

t0ð Þ � �~PII
0 t0ð Þdt0

2

4

3

5

ð3:316Þ

where the first term of the functional = �C
� �

defined in (3.316)3 represents the
spontaneously elastic part (stress of the spring in parallel) and the second term can
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be referred to as memory part. In (3.316), ~PII
0 must be defined using (3.258)3

respectively (3.269)3.
Using partial integration, = �C

� �

can be rewritten

= ~PII
0

� �

¼ P
ð4Þ

tð Þ � � ~PII
0 tð Þ � 1� cð Þe�t�t0

s P
ð4Þ

t0ð Þ � �~PII
0 t0ð Þ

� �t

t0¼0

( )

þ P
ð4Þ

tð Þ � �
Z

t

t0¼0

1� cð Þe�t�t0
s

d

dt0
P
ð4Þ

t0ð Þ � �~PII
0 t0ð Þ

� �

dt0

¼ P
ð4Þ

tð Þ � � ~PII
0 tð Þ � 1� cð ÞP

ð4Þ
tð Þ � �~PII

0 t0ð Þ
� �

þP
ð4Þ

tð Þ � � 1� cð Þe�t
s P
ð4Þ

t0 ¼ 0ð Þ � �~PII
0 t0 ¼ 0ð Þ

� �

þ P
ð4Þ

tð Þ � �
R

t

t0¼0
1� cð Þe�t�t0

s d
dt0 P

ð4Þ
t0ð Þ � �~PII

0 t0ð Þ
� �

dt0

ð3:317Þ

Using the assumption of a stress-free primal state with ~P
II
0 ðt0 ¼ 0Þ ¼ 0, the

underlined term in (3.317) vanishes such that due to (3.257)6, the operator P
ð4Þ

in the
double underlined term in (3.317) can be factored out and thus it follows

= ~PII
0

� �

¼ P
ð4Þ

tð Þ � � c~P
II
0 tð Þ þ

Z

t

t0¼0

1� cð Þe�t�t0
s

d

dt0
P
ð4Þ

t0ð Þ � �~PII
0 t0ð Þ

� �

dt0

8

<

:

9

=

;

: ð3:318Þ

With the identity (note (3.257)6 and ~P
II
0 ðt0 ¼ 0Þ ¼ 0)

c P
ð4Þ

tð Þ � �~PII
0 tð Þ � P

ð4Þ
tð Þ � � c P

ð4Þ
tð Þ � �~PII

0 tð Þ
� �

� P
ð4Þ

tð Þ � �
Z

t

t0¼0

c
d

dt0
P
ð4Þ

t0ð Þ � �~PII
0 t0ð Þ

� �

dt0

8

<

:

9

=

;

ð3:319Þ

and substitution in (3.318), finally, the form proposed in Simo (1987) alternative to
(3.316) follows:

PII tð Þ ¼ Jp0C�1 þ J�2=3= ~PII
0

� �

with p0 :¼ df0 Jð Þ
dJ

and = ~PII
0

� �

¼ P
ð4Þ

tð Þ � �
R

t

t0¼0
K t � t0ð Þ d

dt0 P
ð4Þ

t0ð Þ � �~PII
0 t0ð Þ

� �

dt0

with K t � t0ð Þ :¼ cþ 1� cð Þe�t�t0
s

ð3:320Þ
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Constitutive Equation for the KIRCHHOFF Stress Tensor. Based on the form
(3.316), the constitutive equation for the Kirchhoff stress tensor is derived. Ana-
logue to (3.260)2 and (3.264)4, the following relation holds between the deviatoric

parts of the stress tensors ŝ0, PII
0 and Ŝ0and the fictitious stress tensors ~s0

~PII
0 and ~S:

ŝ0 ¼ F � �P
II
0 � FT ¼ JŜ0 respectively �P

II
0 ¼ F�1 � ŝ0 � F�T ¼ JF�1 � Ŝ0 � F�T

~s0 ¼ �F � ~PII
0 � �F

T ¼ J~S0 respectively ~PII
0 ¼ �F

�1 � ~s0 � �F
�T ¼ J �F

�1 � ~S0 � �F
�T

ð3:321Þ

respectively.

For the first term in (3.316)3 of the second PIOLA–KIRCHHOFF stress, the modified
push-forward operation yields

J�
2
3F � 
ð Þ � FT ¼ J�

1
3F

|ffl{zffl}

�F

� 
ð Þ � J�1
3FT

|fflffl{zfflffl}

�F
T

¼ �F � 
ð Þ � �FT ð3:322Þ

as well as the following identical transformation using (3.190)2, (3.257), (3.260),
(3.261), (3.262), and (3.321)4:

J�2=3F � P
ð4Þ

tð Þ � �~PII
0 tð Þ

� �

� FT ¼ p
ð4Þ
� � �F � ~PII

0 tð Þ � �F
T

h i

¼

¼ p
ð4Þ
� � �F � �F

�1
|fflfflffl{zfflfflffl}

I

�~s0 tð Þ � �F
�T � �F

T
|fflfflfflfflffl{zfflfflfflfflffl}

I

2

4

3

5 ¼ p
ð4Þ
� � ~s0 tð Þ � ŝ0 tð Þ

ð3:323Þ

For the second term in (3.316)3 of the second PIOLA–KIRCHHOFF stress consid-
ering the definition of the relative deformation gradient Ft, it can be found

Ft t0ð Þ :¼ F t0ð Þ � F�1 tð Þ: ð3:324Þ

In addition, the relation between the dyadic product of the right CAUCHY strain
tensor and its inverse and its modified versions and based on (3.192), i.e.

�C
�1 �C ¼ J�2=3C

� ��1
J�2=3C ¼ J2=3J�2=3C�1C ¼ C�1C ð3:325Þ

together with trC � A ¼ trFT � F � A � trF � A � FT ; yield the following identical
transformations:
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J�2=3F tð Þ � P
ð4Þ

tð Þ � � P
ð4Þ

t0ð Þ � � ~PII
0 t0ð Þ

� �� �

� FT tð Þ ¼

¼ð3:262Þ
p
ð4Þ
� � �F tð Þ � P

ð4Þ
t0ð Þ � � ~PII

0 t0ð Þ
� �

� �F
T

tð Þ
� �

�
ð3:321Þ2

p
ð4Þ
� � �F tð Þ � P

ð4Þ
t0ð Þ � � �F

�1
t0ð Þ � ~s0 t0ð Þ � �F

�T
t0ð Þ

h i

� �

� �F
T

tð Þ
� �

�

�
ð3:324Þ

p
ð4Þ
� �
�

�F tð Þ � �F
�1

t0ð Þ
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

�F
�1
t

�~s0 t0ð Þ � �F
�T

t0ð Þ � �F
T

tð Þ
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

�F
�T
t

�

� 1
3

p
ð4Þ
� � tr �F t0ð Þ � �F

�1
t0ð Þ

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

I

�~s0 t0ð Þ � �F
�T

t0ð Þ � �F
T

t0ð Þ
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

I

2

4

3

5C�1
t t0ð Þ

8

<

:

9

=

;

�

� p
ð4Þ
� � �F

�1
t t0ð Þ � ~s0 t0ð Þ � �F

�T
t t0ð Þ � �F

�1
t t0ð Þ � 1

3
tr~s0 t0ð ÞI

� �

� �F
�T
t t0ð Þ

� �

�

� p
ð4Þ
� �
�

�F
�1
t t0ð Þ �

�

I1

ð4Þ
� 1

3
II

� �

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

p
ð4Þ

� � ~s0 t0ð Þ
�

� �F
�T
t t0ð Þ

�

� p
ð4Þ
� � �F

�1
t t0ð Þ � p

ð4Þ
� � ~s0 t0ð Þ

� �

� �F
�T
t t0ð Þ

� �

ð3:326Þ

Substituting (3.323) and (3.326) in (3.316) and further in (3.259)1 finally yields
the constitutive equation for the KIRCHHOFF stress tensor valid for linear-visco-
elastic materials valid for finite strains

s tð Þ ¼ Jp0I þ < ~s0h i with p0 :¼ df0 Jð Þ
dJ

and < ŝ0h i :¼ ŝ0 tð Þ � p
ð4Þ
� �
R

t

t0¼0

dK t�t0ð Þ
dt0

�F
�1
t t0ð Þ � ŝ0 t0ð Þ � �F

�T
t t0ð Þdt0

ð3:327Þ

where the derivative of the kernel defined in (3.320)3

dK t � t0ð Þ
dt0

¼ 1� c
s

e�
t�t0
s : ð3:328Þ

was used.

With the abbreviations

sD
0 tð Þ � ŝ0 tð Þ and sH

0 tð Þ :¼ sJ0 tð Þ ¼ Jp0I ð3:329Þ

and substitution of the kernel (3.320)3 by a PRONY series (Simo 1987) (note the
definition Gi :¼ G0gi for generating the second identity)
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G tð Þ
G0
¼ g1 þ

X

NG

i¼1

gie
� t

sG
i � 1�

X

NG

i¼1

gi 1� e
� t

sG
i

� �

; G0 ¼ G 0ð Þ ð3:330Þ

and interchanging the time arguments in the integrand of (3.327) (note that t0 !
t � t0 and dt0 ! �dt0 and d=dt0 ! �d=dt0 and the interchange of the integration
limits!), the following material equation form is obtained

s tð Þ ¼ sH tð Þ þ sD tð Þ
with sH tð Þ � sH

0 tð Þ

sD tð Þ � sD
0 tð Þ þ p

ð4Þ
� �
Z

t

t0¼0

_G t0ð Þ
G0

F�1
t t � t0ð Þ � sD

0 t � t0ð Þ � F�T
t t � t0ð Þdt0

ð3:331Þ

In (3.330) and (3.331), G(t) is the time-dependent small-strain shear modulus,
G0 is the instantaneous shear modulus, g? is the long-term shear modulus, the gi

are relative moduli, the sG
i are relaxation times and the NG are model parameters.

Equations (3.331) are identical to the form provided in Abaqus FE-code
(Abaqus 2010) except for the volumetric part sH tð Þ � sH

0 tð Þ. In contrast to the
theory outlined previously, where the dissipative parts of the material equation
arise exclusively from the deviation terms, in ABAQUS, in addition, the volumetric
part sH tð Þ is extended by a dissipative contribution. The contribution is in the form
of a hereditary integral with a kernel identical to (3.330) given by (the transfor-
mation of the second identity in (3.332) is analogue to (3.330))

K tð Þ
K0
¼ k1 þ

X

NK

i¼1

kie
� t

sK
i � 1�

X

Nj

i¼1

ki 1� e
� t

sK
i

� �

; K0 ¼ K 0ð Þ: ð3:332Þ

Using (3.324) and (3.325) and considering (3.262), the following conversion
holds for the tensorial structure under the integral in (3.331)3

p
ð4Þ
� � F�1

t t � t0ð Þ � sD
0 t � t0ð Þ � F�T

t t � t0ð Þ
 �

� F tð Þ � P
ð4Þ

tð Þ � � F�1 t � t0ð Þ � sD
0 t � t0ð Þ � F�T t � t0ð Þ

 �

� �

� FT tð Þ
ð3:333Þ

such that, finally, using (3.330)–(3.333), the following alternative forms to the
constitutive equation provided in ABAQUS yields:
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s tð Þ ¼ sH tð Þ þ sD tð Þ

with s H tð Þ :¼ sH
0 tð Þ þ

R

t

t0¼0
j t0ð ÞsH

0 t � t0ð Þdt0

sD tð Þ :¼ sD
0 tð Þ

þ �F tð Þ � P
ð4Þ

tð Þ � �
Z

t

t0¼0

c t0ð Þ �F
�1

t � t0ð Þ � sD
0 t � t0ð Þ � �F

�T
t � t0ð Þdt0

2

4

3

5

8

<

:

9

=

;

� �F
T

tð Þ

� sD
0 tð Þ þ p

ð4Þ
� �

Z

t

t0¼0

c t0ð Þ �F�1
t t � t0ð Þ � sD

0 t � t0ð Þ � �F
�T
t t � t0ð Þdt0

2

4

3

5

and c tð Þ :¼
_G tð Þ
G0
¼ �

X

NG

i¼1

gi

sG
i

e
� t

sG
i ; j tð Þ :¼

_K tð Þ
K0
¼ �

X

NK

i¼1

ki

sK
i

e
� t

sK
i

ð3:334Þ

In (3.332), K(t) is the time-dependent small-strain bulk modulus, K0 is the
instantaneous bulk modulus, k? is the long-term bulk modulus, the ki are relative
moduli, the sK

i are relaxation times and the NK are model parameters.

In (3.334), sD
0 according to (3.329)1, is substituted by ŝ0 according to (3.264)2

and, sH
0 according to (3.329)2, is substituted by sJ according to (3.264)1 and, the

respective entities are indexed with ‘‘0’’!
The volumetric part sHðtÞ in (3.334) is proportional to the identity tensor such

that the following holds for arbitrary tensors A

A�1 � sH � A ¼ sH : ð3:335Þ

In addition, in Abaqus (2010), the relaxation times and the model parameter
N for shear and compression are assumed equal to each other: si :¼ sG

i ¼ sK
i and

NG = NK. In the case of highly compressible materials, the coefficients of the
PRONY series are assumed to be the same: gi = ki.

Since material characterization of human soft tissue employing the Ogden
model as well as the HOLZAPFEL–GASSER–OGDEN model plays an eminent role, the
constitutive equation (3.334) is specialized for both models.

OGDEN Model for Slightly Compressible Materials. Substitution of (3.271)1

in (3.334)2 leads to the volumetric part (where, in addition, the property of (3.335)
becomes apparent)

sH tð Þ ¼ 2
X

N

k¼1

k Xk tð Þ þ
Z

t

t0¼0

j t0ð ÞXk t � t0ð Þdt0

2

4

3

5I with

Xk tð Þ :¼ J tð Þ J tð Þ � 1½ �2k�1=Dk tð Þ; Dk tð Þ ¼ D0
k= 1�

X

M

i¼1

ki 1� e�t=si

� �

" #

:

ð3:336Þ
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where DkðtÞ is a time-dependent ‘‘coefficient’’ and D0
k is the instantaneous bulk

modulus.
The deviatoric part follows by substitution of (3.271)2 in (3.334)3 (Ct is the

relative right CAUCHY strain tensor):

sD tð Þ ¼ 2
X

3

i¼1

X

N

k¼1

lk

ak

�kak
i nini �

2
3

X

N

k¼1

X

3

j¼1

lk

ak

�kak
j

 !

I

þ 2 p
ð4Þ
� �

X

3

i¼1

X

N

k¼1

lk

ak

Z

t

t0¼0

c t0ð Þ�kak
i t � t0ð Þ �F�1

t t � t0ð Þ � nini � �F
�T
t t � t0ð Þdt0

2

4

3

5

� 2
3

p
ð4Þ
� �

X

N

k¼1

X

3

j¼1

lk

ak

Z

t

t0¼0

c t0ð Þ�kak
j t � t0ð Þ �C

�1
t t � t0ð Þdt0

2

4

3

5 with �Ct :¼ �F
T
t � �Ft:

ð3:337Þ

HOLZAPFEL–GASSER–OGDEN Model. Substitution of (3.296) in (3.334)2 leads to
the volumetric part of the material equation

sH tð Þ :¼ Y tð Þ þ
Z

t

t0¼0

j t0ð ÞY t � t0ð Þdt0

2

4

3

5I; Y tð Þ :¼ J2 tð Þ � 1½ �=D tð Þ:

ð3:338Þ

The diviatoric part follows from (3.329)1 by substitution of (3.299) in (3.334)3

and considering the transformation of arbitrary tensors A (where p
ð4Þ

and p
ð4Þ

are to
be used according to equations (3.257) and (3.261))

F�1 � p
ð4Þ
� � A

� �

� F�T ¼ P
ð4Þ
� � F�1 � A � F�T
� 	

ð3:339Þ

to finally lead to the following expression

sD tð Þ �2 p
ð4Þ
� � �U1 tð Þ I1

ð4Þ
þ
Z

t

t0¼0

c t0ð Þ�U1 t� t0ð Þ P
ð4Þ

t� t0ð Þdt0

2

4

3

5 � � �B tð Þ

þ 2 p
ð4Þ
� � j 1� 3jð Þk1

X

N

i¼1

�U2i tð Þ I1

ð4Þ
þ
Z

t

t0¼0

c t0ð Þ�U2i t� t0ð Þ P
ð4Þ

t� t0ð Þdt0

2

4

3

5

8

<

:

9

=

;

� � �F tð Þ �K0i � �F
T

tð Þ
h i

ð3:340Þ

Isotropy. In the case of isotropic materials, it holds that j ¼ 1=3 where (3.340)
reduces to (note that �CI ¼ �BI)
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sD tð Þ � 2 p
ð4Þ
� � �̂U1 tð Þ I1

ð4Þ
þ
Z

t

t0¼0

c t0ð Þ �̂U1 t � t0ð Þ P
ð4Þ

t � t0ð Þdt0

2

4

3

5 � � �B tð Þ

with �̂U1 � c1 þ k1
9

�BI � 3ð Þe
k2
9

�BI�3ð Þ2

ð3:341Þ

The full KIRCHHOFF stress tensor for linear-viscoelastic isotropic materials valid
for finite strains yields in the case of the HOLZAPFEL–GASSER–OGDEN model using
(3.338) and (3.341)

s tð Þ :¼ Y tð Þ þ
Z

t

t0¼0

j t0ð ÞY t � t0ð Þdt0

2

4

3

5I

þ 2 p
ð4Þ
� � �U1 tð Þ I1

ð4Þ
þ
Z

t

t0¼0

c t0ð Þ�U1 t � t0ð Þ P
ð4Þ

t � t0ð Þdt0

2

4

3

5 � � �B tð Þ

ð3:342Þ

considering the identical transformations (where p
ð4Þ

and P
ð4Þ

are to be used according
to equations (3.257) and (3.261))

p
ð4Þ
� � P
ð4Þ

t � t0ð Þ � � �B tð Þ ¼ p
ð4Þ
� � �B tð Þ � 1

3
tr �C t � t0ð Þ � �B tð Þ½ � �C�1

t � t0ð Þ
� �

� �B tð Þ � 1
3

tr �C t � t0ð Þ � �B tð Þ½ � �C�1
t � t0ð Þ

� 1
3

tr �B tð Þ � 1
3

tr �C t � t0ð Þ � �B tð Þ½ � tr �C
�1

t � t0ð Þ
h i

� �

I

ð3:343Þ

and the forms

s tð Þ :¼ Y tð Þ þ
Z

t

t0¼0

j t0ð ÞY t � t0ð Þdt0

2

4

3

5I

þ 2 �̂U1 tð Þ þ
Z

t

t0¼0

c t0ð Þ �̂U1 t � t0ð Þdt0

2

4

3

5 p
ð4Þ
� � �B tð Þ

� 2
3

Z

t

t0¼0

c t0ð Þ �̂U1 t � t0ð Þtr �C t � t0ð Þ � �B tð Þ½ � p
ð4Þ
� � �C

�1
t � t0ð Þ

� �

dt0

2

4

3

5

ð3:344Þ

and
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s tð Þ :¼ Y tð Þ þ
Z

t

t0¼0

j t0ð ÞY t � t0ð Þdt0

2

4

3

5I

þ 2
3

Z

t

t0¼0

c t0ð Þ �̂U1 t � t0ð Þtr �B tð Þ � 1
3

�W t � t0ð ÞC�1 t � t0ð Þ
� �

dt0

8

<

:

9

=

;

I

þ 2 �̂U1 tð Þ þ
Z

t

t0¼0

c t0ð Þ �̂U1 t � t0ð Þdt0

2

4

3

5 �B tð Þ

� 2
3

Z

t

t0¼0

c t0ð Þ �̂U1 t � t0ð Þ �W t � t0ð Þ �C
�1

t � t0ð Þdt0

ð3:345Þ

with the definition

�W t � t0ð Þ � tr �C
�1

t � t0ð Þ � �B tð Þ
h i

ð3:346Þ

where �B :¼ �F � �F
T � J�2=3B is the left deviatoric CAUCHY strain tensor and �BI :

¼ tr �B is its first invariant.

3.3 Finite Element Method

3.3.1 Introduction

From the vast amount of literature on finite element methods, overviews can be
found in Bathe (1996), Zienkiewicz and Taylor (2000a, b), Parisch (2003) and
Wriggers (2008).

The finite element method (FEM) is a numerical approach and discretization
technique to establish an approximate solution of the governing equations where a
closed form solution is not feasible. In mechanical applications, these are usually
partial differential equations including local balance of linear momentum, kine-
matical relations and the constitutive equation (boundary value problem); in multi-
physics problems other equations apply. The complexity of the majority of these
problems involving complex geometries and/or boundary conditions in two or
three dimensions requires the use of numerical methods, since analytical solutions
do not exist. The fundamental concept of the finite element method is that the
underlying differential equations describing a physical problem are transformed to
a numerically solvable discrete formulation. Possible applications of FEM are to
predict stress fields and potential deformation within solid structures subjected to
external forces. Fields of application may involve heat transfer, electromagnetic
fields and fluid flow, among others.
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The key steps from the physical system to an approximate solution of an
employed discrete model are depicted schematically in Fig. 3.25, including error
sources in each simulation step.

While analytic solutions provide information about an unknown quantity at an
infinite number of locations in a particular region, numerical methods provide
values only at discrete points in that region.

With the finite element method, the considered continuum domain of the
problem is discretized (discretization: reduction of an infinite number of degrees of
freedom to a finite number) by subdividing the two or three dimensional domain
into a finite number of small non-overlapping subdomains of simple geometry.

These are called (finite) elements, which represent discrete portions of the
physical structure. The employed elements are geometrically simple, such as
segments for triangles or quadrilaterals for surfaces or two-dimensional problems
and segments for volumes such as tetrahedrons or hexahedrons. The boundaries of
adjacent elements are connected at a number of discrete points, designated as
nodes, which usually are the vertices of the element or midpoints of the element
boundary. Depending on the element type, additional node locations, other than
the ones mentioned, may be assigned.

As illustrated in Fig. 3.26, aside from the approximation of the solution to a
problem on the domain of body B, the domain itself is approximated by a finite

element mesh: X � Xh ¼
S

n

e¼1
Xe (the subscript e refers to the element domain and

the subscript h denotes the fineness of the discretization and relates to the mesh
size) where Xh is the approximate domain, n is the total number of elements, Xe is

the element domain and
S

n

e¼1
denotes the assembly of n element domains, i.e.

summation of all element contributions as well as fulfillment of inter element
compatibility.

Fig. 3.25 Sources of errors reflecting the degree of approximation in the key simulation steps
modelling a physical system

3.3 Finite Element Method 103



The problem solution is explicitly determined in terms of discrete values of
some field variables, e.g. displacements in structural mechanics, at the element
nodes. Unknown variation of field variables at non-nodal points are approximated
across the element domain by interpolating the field variable values at the element
nodes using element shape functions (also referred to as interpolation functions).
This method is referred to as element interpolation.

The element shape functions, most often polynomial forms of the field vari-
ables, are predetermined, known functions which thus describe the continuous
variation of the field variable within each finite element.

With the terms previously introduced, the error sources of a FEM solution, as
illustrated in Fig. 3.25, can be described in more detail. While solution errors occur
as a result of the calculation procedure and include truncation and round off errors,
discretization errors refer to errors based on distorted elements due to complex
geometries or boundary representation. Modeling errors result from the fact that
finite elements might not precisely describe the behavior of the physical problem.

The general approach to the finite element method is summarized as follows:

1. Discretization of the problem domain into a set of finite elements.
2. Description of the mechanical behavior of each finite element involving

restatement of the strong form of the boundary value problem in its integral
or weak form (alternatively to the theorem of minimum potential energy)––
(in stress analysis, the weak form can alternatively be developed from the
principle of virtual work).

3. Derivation of finite element interpolation functions.
4. Development of the finite element equations using the weak form, employing

Galerkin’s method.
5. Assembly of the finite element equations to obtain the global system of

equations.
6. Imposition of the boundary conditions and solution of the assembled

equations.

Fig. 3.26 Discretized (meshed) problem domain X with domain boundary oX ¼ oXu þ oXS

where oXu and oXS are the Dirichlet and von Neumann boundary conditions, respectively. Xe

and oXe denote element domain and element boundary, respectively; t is the surface traction
vector
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3.3.2 Domain Representation

As depicted in Fig. 3.26, the problem domain is discretized by finite elements. The
elements must be chosen, such that they characterize the governing differential
equations of the physical problem. Element shape (triangles, quadrilaterals etc.)
and element type (linear or quadratic) must represent the geometry of the domain
with desired accuracy. Finite element mesh density should be increased at domain
regions where large gradients of the solution are likely to occur.

3.3.3 Weak Form

The partial differential equations of the problem must be formulated in an integral
or weak form to develop the discrete finite element equations which lead to large
matrices that can be solved by computers.

Based on the local balance of linear momentum with respect to current configu-
ration, cf. (3.120), in this Chapter (Sect. 3.2.5.2), the balance equation is given by

rr � Sþ k� q _v ¼ 0: ð3:347Þ

With DIRICHLET and VON NEUMANN boundary conditions, i.e. displacement or
essential boundary conditions and stress or natural boundary conditions, respec-
tively, the strong form of the boundary value problem is obtained to

0 ¼ rr � Sþ k� q _v

u ¼ �u on oXu

t ¼ �t ¼ n � S on oXS

ð3:348Þ

where �u is the prescribed displacement field and �t is the surface traction.

Introducing an arbitrary vector-valued weighting or test function w and mul-
tiplying (3.347) with w and integrating over the whole body domain X enforces the
integral term to vanish in a weighted integral sense (3.349),

Z

X

w � ðrr � Sþ k� q _vÞdV ¼
Z

X

w � ðrr � SÞdV þ
Z

X

w � k dV �
Z

X

w � _v q dV ¼ 0:

ð3:349Þ

Employing the partial integration rule to express the first integral term on the
RHS of (3.349) and making use of symmetry of the CAUCHY stress tensor, deriving
from the balance of angular momentum (3.123), yields
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Z

X

rr � ðS � wÞ dV ¼
Z

X

S � �ðwrrÞ dV þ
Z

X

ðrr � SÞ � w dV

�
Z

X

S � �ðwrrÞ dV þ
Z

X

w � ðrr � SÞ dV : ð3:350Þ

In equation (3.350), employing integration by parts reduces the continuity of
the variable u, i.e. the derivatives of u are first order (cf. from (3.347) and (3.351)
that the expression rr � S has been reduced to S).

Substitution of (3.350) in (3.349) and using GAUSS’s theorem to express rr �
ðw � SÞ and using CAUCHY’s stress theorem to introduce the von NEUMANN boundary
condition (3.93), leads to the weak form of the boundary value problem in the
current configuration

Z

X

S � � ðwrrÞ dV�
Z

oX

�t � w dA �
Z

X

w � k dV þ
Z

X

w � _v q dV ¼ 0 ð3:351Þ

where the surface integral is integrated only over the boundary surface oX:

Whereas (3.347) requires strict fulfillment at every material point of the body,
the weaker form (3.351), needs to be satisfied for the entire body in a global sense.

In structural analysis, replacing w with the virtual displacement field du (3.351)
leads to the principle of virtual work
Z

X

S � � ðdurrÞ dV�
Z

oX

�t � du dA �
Z

X

du � k dV þ
Z

X

du � _v q dV ¼ 0: ð3:352Þ

Equation (3.352) is formulated for the whole body.

3.3.4 Approximation of the Solution

The considered continuum body domain X is discretized in a finite number of finite
elements

X � Xh ¼
[

n

e¼1

Xe ð3:353Þ

where n is the total number of elements and Xh denotes the approximated body
domain; the summation symbol is replaced to indicate the process of assembly of
the single element contributions.
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To approximately describe the variation of the field variable, for example the
nodal displacement field u, within the finite element, interpolation functions,
mostly polynomials, are introduced which are based on the displacement values of
the element nodes. Requirements of such interpolation functions are that they are
continuous over the finite element, differentiable as required by the weak form, and
complete, i.e. include all lower-order terms. Furthermore, they should be differ-
entiable as required by the weak form, and complete, i.e. include all lower-order
terms, and finally, they should meet the values at the element nodes.

Within the isoparametric concept, the same shape functions for interpolating
the geometry and the field variables are employed:

Xe ¼
X

n

i¼1

NiðXÞXi and xe ¼
X

n

i¼1

NiðXÞ xi: ð3:354Þ

From that, for a finite element, the displacement field u within the element is
approximated by

uðXÞ � uhðXÞ ¼ xe � Xe ¼
X

n

i¼1

NiðXÞ ui ð3:355Þ

and

ui ¼ xi � Xi ð3:356Þ

in accordance to (3.48) where NiðXÞ is the shape or interpolation function at the i-
th node, and ui is the unknown corresponding displacement vector of the i-th node,
and n denotes the number of nodes of the element.

Virtual variation of the displacement field approximation of (3.355) leads to

duðXÞ � duhðXÞ ¼
X

n

i¼1

NiðXÞ dui: ð3:357Þ

Using the approximated displacement field solution (3.357), and substituting
in (3.352), the discrete approximation for the equilibrium for a finite element is
given by

0 ¼
Z

Xe

S � �
X

n

i¼1

oNiðXÞ
ox

dV dui �
Z

oXe

�t �
X

n

i¼1

NiðXÞ dA dui

�
Z

Xe

X

n

i¼1

NiðXÞ � k dV dui þ
Z

Xe

X

n

i¼1

NiðXÞ � _v qdV dui

ð3:358Þ
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where the first integral term denotes the internal virtual work dWe
int and the latter

three represent the external virtual work dWe
ext done on the element and expressed

through discrete work contributions at the element nodes. The virtual work is
composed of force vectors acting at the element nodes and the corresponding
virtual displacement vector

dWe
int ¼ Pe

int � dui and dWe
ext ¼ Pe

ext � dui ð3:359Þ

where in the current configuration, Pe
int is the node vector of the integrated force

flow which is given by

Pe
int ¼

Z

Xe

S �
X

n

i¼1

oNiðXÞ
ox

dV ð3:360Þ

and Pe
ext is the node vector of the external forces which is given by

Pe
ext ¼

Z

oXe

�t �
X

n

i¼1

NiðXÞ dA þ
Z

Xe

X

n

i¼1

NiðXÞ � k dV �
Z

Xe

X

n

i¼1

NiðXÞ � _v q dV:

ð3:361Þ

Rewriting (3.358), the equilibrium at a finite element given in discrete form is
thus given by

Pe
int � Pe

ext

� 	

� dui ¼ 0 thus Pe
int ¼ Pe

ext: ð3:362Þ

Assembly of all element contributions i.e. assembly of the contributions at all
inter-element nodes, leads to the global representation of the internal and external
force vectors acting at the discretized body domain

Pint ¼
[

n

e¼1

Pe
int and Pext ¼

[

n

e¼1

Pe
ext ð3:363Þ

Equations (3.363)1 and (3.363)2 together with (3.360) and (3.361) represent set
of nonlinear algebraic equations which are generally solved after linearization for
nodal displacement by means of a numerical method, such as the NEWTON–
RAPHSON method.
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3.4 Parameter Identification (Material Identification)

3.4.1 Introduction

The significance of finite element simulation depends on the quality of the material
parameters and the material models employed in modelling the involved struc-
tures. Besides modelling techniques (mesh quality, element size etc.), emphasis
must be put on material parameter identification of the employed continuum
mechanical material equations. In the majority of applications here, material
parameters are used which are non-linearly related to the stress, cf. e.g. equation
(3.272) or (3.274), such that non-linear optimization algorithms must be used for
parameter estimation. In this context, the term determination of a material equa-
tion is often used. A crucial point in optimally determining and identifying
material parameters is good agreement and representation with experimental
findings such as force–displacement data of the material. This process is presented
in a general way and is referred to in the relevant Sects. 4.3.1, 4.3.2 and
Sects. 5.3.3, 5.3.5.

Quality Functional. To optimally reproduce experimental findings, a measure
must be introduced to quantify the deviations between measured experimental data
and simulated data. The measure is based on a material equation to indicate the
quality of the reproduction or mapping of the experimental data with a theoretical
model equation. Commonly, this is accomplished using a quality functional U of
the form

UðpÞ :¼ 1
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

f M
i hi; pð Þ � f E

i ðhiÞ½ �mm

s

¼! min : ð3:364Þ

In (3.364), UðpÞ denotes the quality, fi
M(hi, p) is the model function, i.e. the

function based on the material equation or more precise, fi
M are the model function

values, p is the parameter vector, i.e. the set of material parameters and it holds
n-independent components (variables) xi which can be adjusted to minimize (or
maximize) the quantity U, the hi are the independent variables and the fi

E are
experimental data (e.g., the hi may represent the displacements and the fi the force,
stress or strain data), n is the number of data points and m is the ‘‘norm parameter’’
(m, n [ R+).

If no restrictions exist, the variables xi can be freely chosen from the parameter
domain En, also commonly denoted Rn, denoting n-dimensional Euclidian space.
The parameter vector p can thus be represented by any point in En.

Although p represents a column ðn� 1Þ matrix of rank n and thus does not
follow tensor transformation, the term parameter vector will still be utilized, since
it is commonly used.
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Mathematically, the quality functional (3.364) represents a ‘‘norm’’, such that
for m = 1, the L1-norm and for m = 2, the L2-norm results. The latter often is
referred to as ‘‘method of least squares’’ or ‘‘GAUSS’ residual or error sums of
squares’’. According to (3.364), generally, all differences between measured data
and model function values are summed, i.e. the deviation between experiment and
theory, and that the m-th power and subsequently, the m-th root is taken where the
(material) parameters in form of the vector p are varied until the entire expression
becomes a minimum.

Optimization Routine. It is appropriate to employ a numerical algorithm for
variation of the parameter vector p regarding minimization of the quality func-
tional (3.364). In this process, generally, stochastic (e.g. simulated annealing,
evolutionary strategies, genetic algorithms etc.) or deterministic (simplex strategy,
sequential quadratic programming (SQP), sequential linear programming (SLP),
sequential convex programming (SCP) etc.) optimization algorithms can be used.
In this framework, all parameter identifications are based on the deterministic
simplex strategy (Haslinger and Mäkinen 2003) programmed in the C program-
ming language. The advantage of this approach is that the simplex strategy is easy
to implement and can readily to be coupled with the finite element solver. The
model function does not need to be explicitly available. A general disadvantage is
that it remains unclear if the global minimum or a local minimum is found.
Further, a single optimization run is highly dependent on the initial parameters, i.e.
the initial prescribed region, since, in its main structure without modifications, the
simplex strategy can not automatically proceed from a local minimum towards a
more advantageous region (Walter et al. 1991).

Principally, by means of a numerical algorithm and together with the quality
functional (3.364), any material equation can be determined based on appropriate
experimental findings. A requirement, however, is that material samples employed
for material testing exhibit an (undisturbed) region of proportional elongation
(homogenous deformation state). Within such a region, the stress and strain is not
spatially dependent and thus constant, for example, when conducting tests
employing dumbbell specimens. Here, the coordinates of the three-dimensional
tensor-valued material equation (model function) are decoupled and can be reduced
to a single coordinate in the loading direction of the material parameters to be
optimized, cf. Silber and Steinwender (2005) and Schrodt et al. (2005) such that the
model function in (3.364) is represented by a scalar-valued function. However, in
more complex cases, the ‘‘material samples’’ always exhibit spatial stress and strain
fields for both artificial support materials (such as soft foam, cf. Sect. 4.3.2) and
biological and human soft tissues, respectively, which possess complex geometries.

In these cases, the existing stress and strain states of the ‘‘material sample’’ at
sample loading cannot be decoupled and thus cannot be treated analytically. The
deformation process must be treated as a spatial boundary value problem, where the
coupled system of equations can exclusively be solved in the form of the vector-
valued balance of momentum. This implies modelling an experiment using the
sample geometry, including the corresponding boundary conditions, by means of the
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finite element method. The major task after modelling, is that the required material
parameters of the constitutive equations to solve the boundary value problem are still
unknown and must still be determined! To approach this problem, the ‘‘inverse finite
element method (iFEM)’’ is used where the quality functional (3.364) can be derived
based on an initial ‘‘guess’’ of the material parameters. This is done by means of the
finite element solver, and with respect to the quality functional, it can be determined
whether additional iteration loops are needed. Thus, for each variation of the
parameter vector p, a complete finite element simulation of the particular boundary
value problem is required, possibly including simulation run time. The agreement of
the simulation output with the test data, e.g. force–displacement data, represents the
quality criterion to be checked for each iteration.

A further difficulty that arises in conjunction with in vivo experiments on the
human body is that the anatomical data to be modelled (which represents the
‘‘material sample’’) by finite elements must be digitalized. A first step in digita-
lization is using imaging techniques such as MRI and then three-dimensional
reconstruction, cf. Sect. 5.3.3.1.

Stability Criteria. The success of the optimization process outlined previously to
determine an optimal parameter vector p strongly depends on the stability of the finite
element simulations. An important contribution is provided by choosing material
parameters satisfying certain restrictions which often arise in the form of inequali-
ties. A more detailed discussion on material stability is provided in Sect. 3.4.8.

3.4.2 Overview and Classification

The search for an optimal state is one of the most fundamental principles. Natural
physical systems are optimized in the sense that they tend towards a state of
minimum energy. Man-made solutions are optimized to minimize costs, while
striving for maximum efficiency in production processes or maximum strength of a
mechanical structure at minimum weight. Optimization is a process to obtain the
best of all possible solutions. This process entails criteria to define whether a
solution is good or bad.

Though the desire for optimization (perfection) seems inherent in humans, nature
cannot be credited with cognizant optimization. Mutation, cross-over and natural
selection are the optimizers with the biological ‘constructions’ adapting themselves
to the particular (dynamic) environmental conditions in the struggle for survival.

Basic terminology is introduced and serves as the background in subsequent
chapters. More detailed overviews about taxonomies of optimization algorithms
are given in Luenberger (1984); Nash (1990); Nocedal and Wright (1999); Rao
(2009); Schwefel (1994) and Spall (2003).

Optimization, in general, requires the existence of more than one possible
solution of conditions for a system to work. If more than a single solution exists,
the question arises as to which solution works best in a particular situation. To
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optimize and find an optimum, or at least a feasible practical solution, different
optimization strategies have been developed. However, whichever optimization
strategy is adopted to tackle the particular problem, a primary step requires proper
mathematical formulation of a given problem. The most basic optimization
problem can be expressed in the form of

UðpÞ ! extr for p 2 En

with pT ¼ ½p1 p2 . . . pn�:
ð3:365Þ

Whether a maximum or a minimum is sought does not influence the choice of
the optimization method, since problems can be formulated either way. Generally,
due to convention, the focus is laid upon the minimum. Then (3.365) can be
formulated as follows. A parameter vector p* [ En is sought such that, for all
p [ En, there holds Uðp	ÞUðpÞ:

The choice of the values of the variables xi in technical applications is often
restricted to maintain physically reasonable solutions, and the variables can thus not
be chosen arbitrarily. If such restrictions exist, optimization is referred to as con-
straint optimization. Constraints on the variables restrict them from taking on any
arbitrary value and thus limit the domain of possible values into bounds. Depending
on the type of constraint, it may either reduce the possible space of the overall
solution (inequality constraint) or even downsize the dimensionality of the problem
(equality constraint). Comprising constraints, equation (3.365) may take the form

UðpÞ ! extr for p 2 Qn ð3:366Þ

subject to:

Q ¼ fhiðpÞ ¼ 0; i ¼ 1; . . .; nh gjðpÞ� ¼ 0; j ¼ 1; . . .; ng

l  pi  u; i ¼ 1; . . .; ng

where Q denotes the valid parameter domain with a set of equality and inequality
constraints hi(p) and gi(p), and explicit variable bounds l and u restricting each
parameter individually.

If, in addition, more than a single objective is to be optimized, multi-objective
optimization is required and all objective functions are optimized simultaneously.
Here, the single objectives can be independent or in mutual conflict. In the case of
several conflicting objectives the optimization is referred to as a true multi-
objective problem. Multi-objective optimization has its roots in welfare economics
at the beginning of the 20th century and is linked to the economists V. Pareto
(Vilfredo Pareto, *1848–�1923) and F. Edgeworth (Francis Edgeworth, *1845–�
1926).

A description of a multi-objective problem can be stated as follows
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UðpÞ ¼

U1ðpÞ
U2ðpÞ
:
:

UnðpÞ

2

6

6

6

4

3

7

7

7

5

! extr for p 2 Qn and n � 2: ð3:367Þ

where the Ui, (i ¼ 1; . . .; n) denote the single objective functions, p the n-dimen-
sional parameter vector which minimizes/maximizes the objective functions
simultaneously, Q is the parameter domain as given in assignment (3.366) and U in
this case denotes a comparator function which depends on the set of objective
functions Ui.

Again, if the minimum problem is considered (3.367) can be formulated as
follows. A parameter vector p* [ Qn is said to be Pareto optimal (or efficient) if
there is no other p [ Qn such that UðpÞUðp	Þ.

Generally, a multi-objective problem is approached by combining single
objectives. A possibility is to sum the absolute values of all objectives into one
combined function. Since it is likely that the single objectives have different effects
on the summed scalar value, it is reasonable to weight each objective individually.
Thus, it is possible to avoid a solution that is unequally dominated by one (or more)
objectives. The effect of this weighting is to supply a greater importance, or greater
weight, to those objectives which have smaller expected effects. Such weighting
entails choosing appropriate weight factors, depending on the particular problem.

Weighting included, equation (3.367) can thus be formulated as follows

fUðpÞ ¼
X

n

i¼1

aifiðpÞg ! extr for p 2 Qn and ai [ 0 and i ¼ 1; 2; . . .; n

ð3:368Þ

where the ai denote positive weight factors and Q is the parameter domain as given
in assignment (3.366).

Optimization methods can be classified aspect wise. A possible distinguishing
characterization is the delineation into deterministic and probabilistic algorithms.
Where probabilistic (randomized) algorithms include, at minimum, one directive
component that acts on the basis of random numbers providing different results with

Table 3.2 Deterministic
optimization algorithms

Direct search methods Gradient methods

Box method Steepest descent
Parallel direct search method Newton’s method
Pattern search (Hooke and Jeeve) Quasi-Newton methods
Strategy of Rosenbrock Fletcher–Reeves method
Simplex method Marquardt method
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the same input, deterministic algorithms always produce the same results. They do
not rely on random numbers at any executional stage, and within the algorithm, at
best, only one possible way to proceed exists. Within this description the fact that
randomized sequences in numerical optimization are generated deterministically by
means of a pseudorandom number generator, thus not truly random, is ignored.

Besides the above classification concerning the method of operation, optimi-
zation methods may be further categorized according to required information into
direct (numerical) search methods and gradient (indirect, analytic) methods.
Indirect methods describe analytical approaches that make use of objective
function values of information about the first partial derivatives (gradient vector)
rUðpÞ of the objective function (first-order methods). They make decisions of
search directions according to these first partial derivatives. Direct methods rely
exclusively on values of the objective function itself. Direct search methods are
thus often referred to as zero-order-, non-gradient- or derivative-free methods,
whereby, as emphasized in (Lewis et al. 2000), these descriptions do not fully
characterize what constitutes the term ‘‘direct search’’. A more distinct description
as given by Hooke and Jeeves (1961) is that direct search methods involve the
comparison of each trial solution with the best previous solution. Direct search
methods thus operate only with the relative ranks of objective function values and
work iteratively towards a solution. Objective function values are evaluated at
various parameter vectors and conclusions are drawn upon this information,
usually employing heuristics, to improve the value of the object function regarding
an optimal solution.

Powell’s method is an example of an efficient optimization method, to be
positioned between direct and gradient methods. Though no gradient information
is needed, the model function must be given explicitly, and several function
evaluations are required for minimization of each particular one-dimensional
function (line searches).

In addition to the above mentioned category of gradient methods, one further
distinguishes Newton methods (second-order methods), which amongst first partial
derivatives make use of second partial derivatives (Hessians) r2UðpÞ of the
continuous, twice-differentiable objective function. In all methods, zero-, first- and
second-order, the aspired optimum depends on the choice of the starting point
U0ðp0Þ. Maxima, minima or saddle-points, as well as global or local optima, are
thereby not distinguished.

Table 3.3 Probabilistic
optimization algorithms

Probabilistic methods

Random search method
Tabu search
Simulated annealing
Genetic methods
Evolution strategy
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A categorization of common optimization algorithms following the consider-
ations introduced in the previous section is shown in Table 3.2 (deterministic
algorithms) and Table 3.3 (probabilistic algorithms).

Probabilistic methods, as shown in Table 3.3, are preferably employed if the
dimensionality of the problem space is large, comprising a large number of
variables in the parameter vector or if a global optimum is sought in the presence
of several relative (local) optima. In addition, probabilistic methods are preferable,
along with zero-order methods, if the objective function is discontinuous, difficult
to differentiate or even non-differentiable at some point in the problem space. Also,
probabilistic methods are preferable if the functional relation between the vari-
ables and the objective function is not easily accessible. These methods do,
however, generally exhibit slow convergence rates. Due to economical aspects,
they are advantageously employed if objective function evaluation is not overly
time consuming.

A pure random choice of parameters, as well as a random initial set of start
parameters is not practicable in the present optimization process since parameters
employed in model functions, as introduced in this Chapter, Sect. 3.2.6.1, must
fulfil certain restrictions and thus can not take an arbitrary value. If random ele-
ments are still to be included in the algorithm, a heuristic scheme must keep the
parameter choice in the prescribed valid bounds.

A global solution, however, even if desirable, is usually difficult to locate and to
identify. It is even challenging to determine whether the current solution represents
a local or a global optimum. Especially nonlinear problems may exhibit various
local solutions (multimodality) that are not global solutions. Here, at least some of
the objectives or the constraints are nonlinear functions of the variables xi, together
with a high dimensionality of the search space, where the objective function
depends on multiple variables. Thus, the search for a global solution may not be
feasible. This is often the case in practical engineering problems, since search time
may become exhaustive or the particular algorithm cannot prevent premature
convergence at local optima, as well as increase the probability of finding a global
optimum. In case of time limitation, a feasible approach therefore incorporates the
initial use of probabilistic methods to explore the region where the global optimum
is expected. Subsequently, a more efficient method can then be used for refined
optimum location.

3.4.3 Downhill Simplex Strategy

The issues discussed in Sects. 4.3 and 5.3 involve mechanical characterisation of
foam and tissue material. The underlying constitutive equations employed to
describe long- and short-term tissue and support material behaviour comprise
constants (material parameters) which need to be determined with respect to the
particular experimental scenarios. In this case, parameter optimization, as
described in more detail in Sect. 3.4.4, is performed where the objective function
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as well as the independent variables of the parameter vector are scalar values. To
perform parameter optimization under the condition that the model function is not
explicitly accessible and only function values are available, an appropriate opti-
mization algorithm must be used. This condition is present in the case of foam and
tissue parameter identification employing the finite element method to solve the
boundary value problem. One possible approach is to employ the downhill simplex
strategy (Nelder–Mead method or amoeba algorithm) devised by Nelder and Mead
(1965), which is subsequently discussed in more detail. The basic procedure
leading to the modified version of Nelder and Mead was first introduced by
Spendley et al. (1962).

Further information about the downhill simplex method can be found in Ha-
slinger and Mäkinen (2003), Kolda et al. (2003), Schwefel (1994) and Walter
(1991).

The simplex strategy of Nelder and Mead should not to be confused with the
simplex method of linear programming, introduced by Wood and Dantzig (1949)
and Dantzig (1949), where an optimum of a linear objective function, subject to a
number of linear equality or inequality constraints is sought. Although both
strategies make use of a geometric figure called a simplex, linear programming
uses the simplex differently.

The downhill simplex method is a local unconstrained minimizing algorithm
for general nonlinear functions in multi dimensions, not relying on analytical or
numerical derivative information. It thus can be classed as a heuristic method that
begins with (n ? 1) vertices (parameter vectors) in the n-dimensional space Rn,
instead of one initial starting point. During optimization, it decides on further
procedures following a scheme, using information gathered in previous iterations.
Starting with an initial (random) guess, n further vertices of a non-degenerate
simplex are generated. This may be accomplished through multiplication of each
variable of the initial parameter vector with a factor to generate, in general, a

Fig. 3.27 Simplex shape modifications in 2-dimensional Euclidian space R2: a Reflection,
b Expansion, c Partial Contraction (inside or outside) and d Shrinking. Dashed triangle: current
simplex, shaded triangle: potentially new simplex
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scalene polyhedron with variable side lengths or via addition with an appropriate
value to generate an equilateral polyhedron. In the latter case, i.e. an equilateral
triangle in R2 and a tetrahedron R3, cf. Fig. 3.27 may be generated. Apart from
setting up the initial simplex and the initial point respectively, all further steps are
deterministic and do not involve random elements.

In Fig. 3.27 the dashed triangle DpBpWpG denotes the current simplex config-
uration, the vertex positions correspond to the objective function values U, e.g. UW

is equivalent to the largest (or worst, index W) function value, UB and UG represent
the best and the second best (good) function values, respectively. They derive from
their corresponding parameter vectors:

UB :¼ UðpBÞ ¼ minfUðpÞg; UG ¼ UðpGÞ; UW :¼ UðpWÞ ¼ maxfUðpÞg
ð3:369Þ

where UW [ UG [ UB:

In the minimum problem, the objective function value is evaluated in each
vertex, and the inherent heuristic follows the basic scheme: replace the vertex with
the largest function value, i.e. Uw in Fig. 3.27a, with the one situated at twice the
distance from the ‘worst’ vertex to the geometrical centre, i.e. centroid m, of all
other points in extension from the worst vertex to the centre point, i.e. replace pW

with r. A possible rotation of the simplex around the vertex with the best function
value, pB, may result from this approach if, at each iteration, the reflected new
vertex retains the worst function value. This may especially be true if the search
advances towards a minimum where each new trial may not reduce the function
value. Thus, to avoid stagnation, the simplex edge lengths must be changed
appropriately depending on the evaluated objective function values at the poten-
tially new vertices. The possible simplex changes are described in the following,
starting from initial simplex generation and using the two-dimensional example
depicted in Fig. 3.27.

1. Step: (Random) choice of the initial point pi;k ¼ p1;1 (with i denoting the
vertex index and k the iteration counter) and an appropriate side length slen

and side length factor sfac, respectively.
2. Step: Generation of the initial simplex in R2 comprising (n ? 1 = 3)

vertices.

p1;1 ¼
p1 1;1

p2 1;1

� �

p2;1 ¼
slen þ p1 2;1

p2 2;1

� �

p3;1 ¼
p1 3;1

slen þ p2 3;1

� �

ð3:370Þ

3. Step: 3.1-Determination of the best, second best (good) and worst objective
function value and vertex respectively, by evaluating the model and the
objective functions at all Pi, 1 and subsequent sorting of U according to size
(e.g. via Bubble Sort).
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UW [ UG [ UB  Ui ¼ Uðpi;1Þ i ¼ 1; 2; 3 ð3:371Þ

3.2-Determination of the coordinates of centroid m of all function values
except for the best in R2 (3.372), and generally in Rn (3.373).

m ¼ 1
2
ðpG � pBÞ þ pB

¼ 1
2
ðpG þ pBÞ

¼ p1 G;1 þ p1 B;1

2
p2 G;1 þ p2 B;1

2

h iT

ð3:372Þ

In n-dimensions:

m ¼ 1
n

X

n

i¼1

pi with pi 6¼ pW : ð3:373Þ

3.3-Construction of vertex r by reflection of the triangle DpBpWpG through the
side pB�pG. The potentially new triangle is DpBpGr.

r ¼ pW þ 2ðm� pWÞ
¼ ðpG þ pBÞ � pW

¼ ½p1 G;1 þ p1 B;1 � p1 W ;1 p2 G;1 þ p2 B;1 � p2 W;1�T
ð3:374Þ

Objective function evaluation at vertex r.

Case distinction
If UðrÞ\UðpBÞ go to step 5 otherwise proceed with step 4.

4. Step: Test if value of UðrÞ is smaller than the function values at all other
vertices.

Case distinction
(i) If UðrÞ Uðpi;1Þ for one single vector pi;1 with ði ¼ 1; . . .; nÞ go to step

6
(ii) If UðrÞ !Uðpi;1Þ for all pi;1 with ði ¼ 1; . . .; nÞ go to step 7
(iii) If UðrÞ Uðpi;1Þ for more than one vector pi;1 with ði ¼ 1; . . .; nÞ

replace pW with r and go to step 9
5. Step: Expansion of the simplex DpBpGr to generate the potentially new tri-

angle DpBpGe (cf. Fig. 3.27b) by determination of the coordinates of point
e through shifting of r along mr about the distance of pWm.

e ¼ pW þ 3ðm� pWÞ

¼ 3
2
ðpG þ pBÞ � 2pW

¼ 2r�m

ð3:375Þ
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Objective function evaluation at vertex e.

Case distinction
If UðeÞ\UðpBÞ replace pW with e, otherwise replace pW with r. In either case

proceed with step 9
Equation (3.375) can be written in matrix notation using (3.372) and (3.374).

6. Step: Partial outside contraction of the simplex DpBpGr to generate the
potentially new triangle DpBpGc2 (cf. Fig. 3.27c) by determining the coor-
dinates of point c2 through shifting of r along mr about the distance of 0:5 mr.

c2 ¼ mþm� pW

2

¼ 3ðpB þ pGÞ � 2pW

4
¼ 0:5ðmþ rÞ

ð3:376Þ

Objective function evaluation at vertex c2.

Case distinction
If Uðc2ÞUðrÞ replace pW with c2 and go to step 9, otherwise go to step 8.
Equation (3.376) can be written in matrix notation using (3.372) and (3.374).

7. Step: Partial inside contraction of the simplex DpBpGr to generate the
potentially new triangle DpBc1pG (cf. Fig. 3.27c) by determining the coor-
dinates of point c1 through shifting of r along mr about the distance of mr.

c1 ¼ pW þ
m� pW

2

¼ pB þ pG þ 2pW

4
¼ 0:5ðmþ pWÞ

ð3:377Þ

Objective function evaluation at vertex c1.

Case distinction
If Uðc1Þ pW replace pW with c1 and go to step 9.
Equation (3.377) can be written in matrix notation using (3.372).

8. Step: Total contraction (shrinking) of the simplex DpBpWpG towards pB to
generate the potentially new triangle DpBp	Wp	G by determining the coordi-
nates of points p	W and p	G through shifting of pW along pWpB and pG along
pGpB about the distance of 0:5 pW pB and 0:5 pGpB, respectively.

p	W ¼
pB þ pW

2
and p	G ¼

pB þ pG

2
ð3:378Þ
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Objective function evaluations at vertices p	W and p	G.
Go to step 9.
Equation (3.378) can be written in matrix notation using (3.374).

9. Step: Increment iteration counter k and perform convergence criteria checks
using the current objective function value Uk, e.g.

Uk  tola ð3:379Þ

jUk � Ukþdj  tolb d 2 N ð3:380Þ

Case distinction
If (3.379) holds true the search terminates.
If (3.380) holds true no improvement is made and the search likely has become

stuck at some point. Go to step 10
If neither condition holds true go to step 3.

10. Step: (Automated) restart from the current position with appropriate side
length scaling.

In the above example one single objective function U was used. The algorithm
can instead be extended for multi-objective optimization as described in
Sect. 3.4.2, by using a comparative function that combines (weighted) information
of the single objective functions. According to the sensitivity of changes in the
parameter values, a multiple increase in the initial simplex side length in the
direction of each base vector may be more advantageous than adding a particular
constant value. Addition of such a constant may result in a relatively large initial
geometry and more function calls for the simplex to reduce.

In practice, a visual check of convergence and status is essential to judge the
optimization quality.

3.4.4 Parameter Optimization

In parameter optimization, scalar values (parameters) pi
* are identified for which

the objective function value reaches an optimum:

Uðp	Þ ¼ extrfUðpÞg with pT 	 ¼ ½p	1 p	
2 . . . p	

n� for p	 2 En : ð3:381Þ

In engineering problems, prediction of the constitutive mechanical material
behaviour of real structural components under arbitrary loading is usually assessed
through simulation. The quality of such predictions is based on the (mathematical)
model employed in the simulation process. Following a phenomenological
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approach on the macro level, such a simulation model is based on constitutive
material models which incorporate parameters (phenomenological constants).
Generally, the parameters are unknown and must be determined from experimental
data. Figure 3.28 illustrates the general process of system modelling (Santamarina
and Fratta 2005).

The real process, Fig. 3.28a, can be numerically simulated to solve the gov-
erning equations (or the mathematical model) using a numerical method, as
illustrated in Fig. 3.28b. Considering a mechanical system, the input signals
(control variables or causes) represent the system excitation, e.g. the mechanical
loading. The output signals (system response of effects), such as displacement or
deflection, are determined by the present state of the system, the input signals and
the employed material models. The parameter vector p 2 En summarizes a set of
material parameters, where the superscript n represents the number of parameters.

A general procedure for the development of constitutive models following the
concept introduced in Mahnken (2004) is shown in Table 3.4. The material

Fig. 3.28 System identification block diagram: a Real System (RS), b Simulation Model (SM)

Table 3.4 Stepwise strategy in constitutive model development

Step Description

1. Modelling concept Determination of model requirements:
specification of the loading range to be simulated and definition of the

observation scale (macro-, meso-, micro-)
characterization of basic existing phenomena (nonlinearity,

viscoelasticity, damage, …)
uncertainties of experimental data (errors, scattering, inappropriate

loading ranges and technical requirements)
2. Mathematical

modelling
Formulation of constitutive equations aiming at qualitative

description of the physical effects, and introduction of material
parameters xi

3. Material parameter
identification

Parameter identification based on comparison of simulated output and
measured data D1

4. Model verification Investigation of the quality and adequacy of the employed material
model to simulate the experimental findings D1

5. Model validation Investigation of the quality and adequacy of the employed material
model to simulate the experimental findings D2
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parameters identified in Step 3, Table 3.4 are dependent on the set of experimental
data D1 which was used as the basis for the identification process. The quality of
the material parameters reflecting this experimental output is the subject in the
verification step, Step-4. If the model, including the material parameters, is capable
of simulating experimental scenarios different from the test comprising data set D1

results with test output data set D2 derived from individual experiments, is
required.

If both data sets contain pairs of discrete data points D1 ¼ fxi; yig; D2 ¼
fxj; yjg the necessary condition holds that if xi = xj then yi = yj. In this process,
the material parameters are independent of data set D2.

In Sects. 4.3 and 5.3 constitutive equations are introduced to describe foam and
tissue material behaviour. The particular experimental loading scenarios were
designed to cover the maximum strain ranges occurring during body weight
loading in the supine or seated position, with specific body mass. According to the
phenomena experienced during material testing, appropriate material models were
chosen, which were able to qualitatively describe the experienced physical effects.
Material parameters were identified for all involved materials to quantitatively
describe the experimental findings. Basic formulation of constitutive equations as
introduced in Step 2, Table 3.4 was not a subject in this process.

3.4.5 The Direct Problem

In mechanics, a material model consists of a set of constitutive equations which
provide a functional relation between stress and strain measures, as most generally
described through

U F; ph i ¼ S ð3:382Þ

where S for instance is the CAUCHY stress tensor, F is the deformation gradient
tensor, and the parameter vector p represents the material constants contained in
the material equations.

These constitutive equations involve, aside from material equations, displace-
ment–strain as well as balance laws, basically coupled in terms of sets of differ-
ential equations. Together with geometrical information, loading conditions,
displacement constraints and the material parameters, the conditions at the

Fig. 3.29 Concept of the
direct problem with material
parameters as input signal
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boundary of a structural component are defined and the constants of integration of
the set of differential equations can be derived (Boundary Value Problem). Using
the above example of (3.382), the solution of such problems where F and p are
known and S is to be found, is referred to as a direct problem or a forward
problem, see (Aster et al. 2005; Tarantola 2004).

The solution of a direct problem, thus, involves finding effects based on a
complete description of their causes.

Referring to the terminology introduced in Fig. 3.28 and using the above ter-
minology, S is the output signal whereby F and external loading, as well as p, are
input signals of the system. The direct problem is illustrated in Fig. 3.29 as
follows.

Furthermore, the direct problem can be expressed mathematically making use
of an implicit definition of (3.382)

Find SðF; pÞ such that G F; p; Sh i ¼ 0 for given F and p:

3.4.6 The Inverse Problem

In contrast to the corresponding direct problem, the solution of an inverse problem
entails ‘‘determining unknown causes based on observation of their effects’’
(Alifanov 1994; Turchin et al. 1971). Inverse modeling makes use of the actual
results of the system response to infer values of the material parameters. Using
again the example introduced in (3.382), the inverse problem can be formulated as
follows. Find an appropriate material parameter vector p to provide the least
possible deviation of simulation data S from the experimental data SExp

SðpÞ � SExp










! min with SðpÞ ¼ U F; ph i: ð3:383Þ

This leads to the following expression to be minimized by an adequate choice
of p

U F; ph i � SExp










! min: ð3:384Þ

The inverse problem can thus be illustrated in Fig. 3.30 as follows.

Fig. 3.30 Concept of the
inverse problem with material
parameters as output signal
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Expressed mathematically, the inverse problem can be formulated as

Find p such that G F; p; Sh i ¼ 0 for given F and SðpÞ ¼ SExp:

In the experimental part of this investigation, described in more detail in
Sects. 4.3 and 5.3, experimental force and displacement data from foam and tissue
indentation are evaluated at discrete time steps. In the particular cases of tissue and
foam parameter identification, simulation force and displacement measures,
instead of stress measures, are used as comparable quantities in the parameter
optimization process.

Inverse modelling as a form of parameter optimization is associated with
several difficulties, briefly considered in the following. An overview on the topic is
provided in Bertero (1997); Santamarina and Fratta (2005) and Tarantola (2004).

One of the problems that arise regarding inverse modelling, aside from the
problems of existence and continuous dependence, is the issue of uniqueness.
These problems represent a typical mathematic property of inverse problems, and
they are summarized under the term of ill-posedness. The opposing property is
well-posedness, a concept first introduced by Hadamard (1923). A problem is
called well-posed if the three previously introduced requirements are satisfied
(Courant 1989).

While the direct problem, in a deterministic context, is well-posed and has a
unique solution, the inverse problem does not. Especially, the issue of non-
uniqueness was observed in the parameter identification processes described in the
subsequent chapters. In this context, non-uniqueness leads to more than a single set
of parameters yielding minimum values for the objective function, and thus good
correlation with the experimental data. Depending on the model function structure
this can be due to the fact that effects on the sum of squared residuals, as described
subsequently, of changes in one parameter can possibly be compensated by
another parameter. This can especially be true if the number of parameters is large.
In particular, the problem of non-uniqueness arises when employing material
models such as the OGDEN-model (Ogden 1972a, b). Such models are purely
continuum-based and incorporate phenomenological material parameters, which
are not physically motivated. Using such a model to describe homogenous
material, the parameters are usually characterized by reproducing specific,
homogenous experiments, e.g. uniaxial-, biaxial-, planar- or volumetric com-
pression/tension and shear. In this context, often the evaluated model parameters,
using one specific experiment, do not validly predict a case of arbitrary defor-
mation, even if the particular experiment is accurately simulated. Then, it is
necessary to perform multiple experiments to employ more than a single objective
function in the parameter optimization process, to find an appropriate parameter
set minimizing this multi-objective problem.

Parameter identification using the inverse modelling technique requires a pro-
gram to solve the direct problem, Fig. 3.28b, for each tested parameter set to
obtain comparable simulation output. A convenient computational method
regarding nonlinear analysis of mechanical problems involving complex material
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models, complex geometry and contact interactions under arbitrary loading is the
finite element method. This method is employed to find an approximate solution to
the boundary value problem. In this regard, analytical solution of the set of dif-
ferential equations is only feasible in limited, particular cases. An example is in
uniaxial compression using the Ogden model, whereby however, the model error
increases with increasing lateral material strain.

In addition to evaluating model function values, to iteratively improve the
parameter vector towards minimization of the deviation between computed and
measured quantities, i.e. to solve the least-square problem, an optimization algo-
rithm is needed. A gradient-free algorithm is an appropriate choice. In more
complex situations, as in problems previously described, derivatives of the model
function are not accessible. The algorithm must thus work with objective function
values, exclusively provided by the finite element solver.

Fig. 3.31 Schematic flow-chart of a single-criteria material parameter optimization process
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The diagram, Fig. 3.31, schematically illustrates the iterative process of the
inverse problem for material parameter optimization.

Signs and symbols used in Fig. 3.31:
Referring to the employed constitutive material equations used for character-

ization of tissue and foam material, N is the order of the series expansion, a and m
are variables of the parameter vector p; the quantities Fexp

i ; Fsim
i and uexp

i ; usim
i are

force and displacement outputs of simulation (superscript sim) and experiment
(superscript exp); Uk is a scalar objective function value; n is the order of series
expansion in objective function evaluation, and it is equal to the compared number
of data pairs; subscript k increments the parameter vector (iteration number); p with
respect to N subscripts the single parameters; tola, tolb are tolerance values for
program termination at good convergence (i), and check of stagnancy of
improvement of the objective function value, (ii), respectively.

Signs and symbols used in Fig. 3.32:
The ui are spatial coordinates of the body support which are to be optimized

regarding their spatial position; Si represents the particular stress component at
tissue material point i, �Si is the mean of all considered Si to obtain one repre-
sentative scalar value.

Fig. 3.32 Schematic flow-chart of a single-criteria shape parameter optimization process
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In Chap. 7 optimization potentials and strategies regarding support material and
design optimization are identified. In this process, the topology of body supports is
altered to reduce internal tissue stress (and/or strain) in the region underneath the
ischial tuberosity of the seated body. To alter support topology, a similar approach
to that employed in parameter optimization is followed, Fig. 3.32. This process is
further illustrated in Fig. 3.30, exchanging the material parameters as unknown
causes with support contact surface topology (displacement) and tissue
displacement.

Mean tissue stress represents the scalar objective function value which is to be
minimized. Instead of stress, strain could equally well be used as an optimization
criterion. The approach is further discussed in detail in Chap. 7.

3.4.7 The Least-Squares Method

Parameter identification can be carried out using simple procedures such as the
‘hand-fitting method’ or the ‘trial and error method’, see Abbott and Refsgaard
(1996). It can, however, also be approached more advantageously, considering the
process of parameter identification as an optimization problem. Automatic
parameter optimization is performed by employing a numerical algorithm to find
optima of a given objective function.

The objective function represents the quantity to be optimized, subject to the
parameters pT ¼ ½p1 p2 . . . pn� used for input. In this regard, the least-square
method requires the sum of squared residuals, i.e. sum of deviations of simulated
and measured data, to be at a minimum. A detailed overview of the least-square
approach can be found in Ben-Israel and Greville (2003) or Grasselli and Peli-
novski (2007).

In the example of material parameter identification discussed previously, the
experimental output is given through force–displacement data F(u), where each
discrete displacement value uexp is assigned a measured force value Fexp. In
addition, simulating the experiment and employing a given set of material
parameters pi, every simulated discrete displacement value usim can be assigned a
simulated force value Fsim. Each simulated set of material parameters will produce,
in the unique case, a different force–displacement output. Employing the least-
square approach, each individual output data set can be compared with the target
(the set of experimental data) and a scalar residual is assigned.

In Fig. 3.33, various simulation outputs on the basis of different material
parameter sets Pi are opposed to the target function of experimental data. The
depicted simulation outputs schematically represent different stages in the
parameter optimization process leading towards an approximate match of simu-
lation and experimental results.
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As already mentioned, the least-square approach aims to minimize the sum of
the deviations squared from a given set of data. Generally, a weighted least-square
problem can be formulated basically following (3.364) as given in (3.385).

UwðpÞ :¼
X

n

i¼1

gi f M
i hi; pð Þ � f E

i ðhiÞ
 �2¼! min ð3:385Þ

Using the expressions introduced in Fig. 3.31, the unweighted least-square
problem thus reads as given in (3.386).

Ukðak;p; mk;p; . . .Þ :¼
X

n

i¼1

Fsim
k;i ðak;p; mk;p; . . .Þjui

� Fexp
k;i jui

h i2
ð3:386Þ

In (3.385) UwðpÞ denotes the weighted sum of squared (vertical) residuals
where the bracket term f M

i ðhi; pÞ � f E
i ðhiÞ is defined as moduli of the i-th residual,

f M
i ðhi; pÞ is the model function including the adjustable parameters pi held in the

parameter vector p and the hi as independent variables, the f E
i are dependant

variables obtained through experiments, gi is the weight factor of the i-th point.
They account for appropriate influence of data points and unequal variance,
respectively; n is the number of sampling points.

In (3.386) the squared vertical difference of simulated discrete force values Fsim
i

and experimentally measured force values Fexp
i at consistent displacements ui is

derived for iteration step k.

Fig. 3.33 Force–displacement curves recorded from uniaxial compression experiment and
simulation outputs in the parameter optimization process of polyurethane soft foam material
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The term in parenthesis in (3.385) denotes the Euclidian norm (L2-norm) of the
residual vector jjrjjE which is to be minimized

fjjrjjE ¼ jj
X

n

i¼1

½hi f E
i �

T � ½hi f M
i ðhi; pÞ�T jjg ! min: ð3:387Þ

The square of the Euclidian norm of the residual vector thus equals the sum of
squared residuals, equivalent to the least-square definition given in (3.385)

k r k2
E ¼

X

n

i¼1

½f E
i � f M

i ðvi; pÞ�2: ð3:388Þ

The least-square solution of (3.385) is thus defined as a vector p which
minimizes the Euclidian norm of the residual vector r, i.e. minimizing the sum of
squares of the moduli of the residual ri. As outlined previously, in tissue and foam
material parameter optimization, function values are provided by the finite element
solver. This represents a non-linear least-square problem where, in addition, the
model function is not accessible. Therefore, an iterative numerical parameter
optimization algorithm, e.g. a direct or probabilistic method, must be employed to
find values of the parameters pi, which minimize the quality or objective function
Uk. In general, however, in linear least-square fitting, adoption of iterative pro-
cedures is not necessary since the methods of differential calculus can be applied
to the model function. For this reason, the sum of the squares of the residual is

Fig. 3.34 Linear interpolation of experimental data points in the interval [uexp
h , uexp

hþ1] on the
linear interpolant of the experimental curve in that interval at arguments usim

i
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used instead of the unsquared absolute sum of values. This allows the residuals to
be treated as continuous differentiable quantities. If the least-square problem is not
treated analytically, it is more convenient to minimize the unsquared absolute sum
of distances, as done in the code example added in the appendix. The reason is that
squares of the residuals may produce a disproportionately large weighting of
outlying points. In such cases, weighting of the solution as implemented in (3.385)
may represent an adoptable approach. In addition, vertical deviation rather then
perpendicular offset is used since this permits a more practical approach. A ‘dis-
advantage’, however, is that interpolation (linear, polynomial, spline, etc.) of data
is required to obtain comparable quantities at consisted abscissa coordinates
(function arguments). This issue will be described as follows in more detail.

As previously mentioned, experimental and simulated data must be compared at
consistent points. In this process direct comparison is, in most cases, not a priori
possible since both data sets are likely to differ significantly. Generally, simulated
data does not represent a proper subset of the experimental data set: DSim 6� DExp:
Usually, more experimental data is on hand than simulation output. If sample
intervals are known, simulation output can be requested accordingly, depending on
the simulation strategy used. The simulation output intervals must coincide with
the experimental output intervals. In nonlinear static analysis employing direct
incrementation (direct user control of the time increment size, instead of an
automated incrementation schema) this may lead to serious convergence problems
during simulation. Increased simulation time or even incomplete termination of the
analysis may then result. A more feasible approach is to use variable time
increment size and to adjust the simulation data output to the experimental data via
interpolation. A crucial issue is the use of (fixed) sample points of the experimental
curve rather than of simulation output as reference points. This guaranties com-
parability of the sums of squared residuals, due to independence of simulation
convergence and thus data point numbers of simulation output.

Generally, on the basis of one data set that defines the total number of discrete
data points, appropriate values incorporating information of the other data set must
be found to objectively compare both sets and establish information regarding the
quality of agreement. In Fig. 3.34 these reference data points are denoted uexp

i
(i = 1,…,n) comprised in the set of experimental data. If particular function
arguments of both sets are not identical uexp

h 6¼ usim
i , the linear interpolation rule

(3.389), can be used to denote each simulated function value Fsim
i a comparable

value �Fexp
i on the corresponding linear interpolant of the experimental curve. Using

the example illustrated in Fig. 3.34, the linear interpolant is between the points
(Fexp

h , uexp
h ) and (Fexp

hþ1, uexp
hþ1) in the interval [uexp

h , uexp
hþ1].

�Fexp
i ¼

uexp
hþ1 � usim

i

� 	

uexp
hþ1 � uexp

h

� 	 Fexp
h þ

usim
i � uexp

h

� 	

uexp
hþ1 � uexp

h

� 	 Fexp
hþ1 ð3:389Þ

In the figure, Fig. 3.34, the above relation of (3.389), is depicted.

130 3 Fundamentals



Having provided comparable (force) values, the least-square problem for the
illustrated case can be formulated as follows

Ukðak;p; mk;p; . . .Þ :¼
X

n

i¼1

Fsim
k;i ðak;p; mk;p; . . .Þjusim

i � �Fexp
k;i jusim

i

h i2
! min: ð3:390Þ

Performing interpolation, the following case distinctions should be covered in
the program code to exclude ambiguity:

(i) points, i.e. function arguments, are identical, uexp
n ¼ usim

m : no interpolation is
needed, and (force) deviation can be deduced directly

(ii) points, i.e. function arguments, are unequal, uexp
n 6¼ usim

m : interpolation is
required.

(iii) both points, i.e. function arguments, are unequal, uexp
n 6¼ usim

m and one set
contains larger valued function arguments uexp

max [ usim
max: interpolation of the

function value corresponding to the smaller argument on the interpolant
associated to the curve containing the larger argument.

Remark: As described in Sects. 3.3 and 3.4.1, the ABAQUS
� finite element solver

was used to solve the boundary value problem for each iteration step, cf. Figs. 3.31
and 3.32. In this process, the ask_delete parameter in the ABAQUS

� environment
file is set to off in order to run simulations without prompting for attributes.

3.4.8 Optimization Constraints: Material Stability

As described in Sects. 4.3 and 5.3, long-term human soft tissue and long-term soft
foam material behavior were modeled using hyperelastic material models. These
models assume that the material behavior can be derived from a strain–energy
potential. Such a potential is non-dissipative, path independent and reversible. It is
commonly referred to as a strain–(stored)–energy (density) function, which rep-
resents the strain-energy stored in the material per unit of reference volume. Fur-
thermore, elastic materials for which a strain-energy function can be formulated are
referred to as GREEN-elastic or hyperelastic materials. Restrictions are imposed on
the form of the strain–energy function based on physical considerations, and the
strain–energy function must thus be consistent with the following issues:

(i) w must be positive for any deformation

w ¼ wðkiÞ[ 0 for 0 \ ki \1 with ki 6¼ 1 and ði ¼ 1; 2; 3Þ
ð3:391Þ

where the ki denote the principal stretches.

(ii) w must be equal to zero in the strainless initial state where no strain-energy
is stored
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w ¼ wðki ¼ 1Þ ¼ 0 for ði ¼ 1; 2; 3Þ ð3:392Þ

(iii) w must be consistent with the linear theory of small strain isotropic elas-
ticity, i.e. classical SAINT–VENANT–KIRCHHOFF material must result in the
limits.

As further criteria, w has to meet the so-called growth conditions, i.e.

(iv) a material cannot be compressed to have zero volume with the stresses
approaching �1, nor can it be infinitely stretched with the volume and the
stresses approaching þ1; both would require infinite strain-energy, which
is physically impossible (see in Sect. 3.2.6.1 Eq. (3.196))

lim
J!o

w ¼ 1 and lim
J!1

w ¼ 1 ð3:393Þ

where J is the ratio between the current volume change dV and the refer-
ence configuration dV ¼ JdV0 and J ¼ det F ¼ k1k2k3 the JACOBIAN

determinant of the deformation gradient F respectively (see in Sect. 3.2.3.5
Eq. (3.55) and Sect. 3.2.6.1 Eq. (3.189)).

These restrictions together with mathematical proofs regarding existence of
solutions of the related boundary value problems imply that the material parameters
employed in the particular strain–energy function cannot be chosen arbitrarily.
Rather, the parameters must be restricted such that the particular strain–energy
function ensures that the material modeled behaves in a physically acceptable
manner. Due to inaccurate parameter choice non-physical effects may result, as for
instance, a non-strictly increase of the stress–strain function at a displacement-driven
uniaxial tensile test. Such effects are commonly referred to as material instabilities.

Detailed overviews about material stability issues, including requirements of
convexity and polyconvexity, are presented in Baker and Ericksen (1954), Ciarlet
(1988, 1989), Reese (1994), Hartmann and Neff (2003), Marsden and Hughes
(1983), Ogden (1984), Rivlin (1980, 2004), Romanov (2001) or Wriggers (2008).

Restrictions on the material parameters as deduced in the following sections can
be implemented in a parameter optimization process as described in Sect. 3.5.4
and as depicted in the flow chart of Fig. 3.31.

3.4.9 Drucker Stability

Based on Drucker’s stability postulate (Drucker 1964), and implemented in a
special form in (Abaqus 2010), the infinitesimal change in KIRCHHOFF stress-tensor
ds following from an infinitesimal change in the corresponding HENCKY or loga-
rithmic strain tensor dGH must hold

ds � �ðdGHÞT [ 0: ð3:394Þ
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This assumption represents a possible approach for developing a criterion for
the material stability in terms of material parameter restrictions. Using the
example of the modified OGDEN–HILL strain–energy potential (Ogden 1972a, b;
Hill 1978), (a.k.a. Ogden foam model) which is referred to as Hyperfoam in
ABAQUS

�, and used to characterize soft polymeric foam materials in Sect. 4.3, the
concept of DRUCKER stability is briefly summarized as follows.

Regarding (3.96), (3.99), (3.274) and (3.352) and also using spectral repre-
sentation for GH the spectral forms of the KIRCHHOFF stress tensor and the HENCKY

strain tensor read

s ¼ F � PI ¼
X

3

i¼1

sinini; si � kiPii � ki
ow

oki
¼ 2

X

N

j¼1

lj

aj
kaj

i � J�ajbj
� 	

ð3:395Þ

and

GH ¼
X

3

i¼1

GH
i nini with GH

i ¼ lnki ð3:396Þ

with the identical eigenvectors ni; and si and GH
i are the principal values of tensor

s and GH ; respectively. Substituting (3.395) in (3.394) leads to the following
expression

X

3

i¼1

dsidGH
i [ 0: ð3:397Þ

With regard to (3.396), the differential logarithmic strain and the volume ratio
follow:

dGH
j ¼ d ln kj ¼

dkj

kj
ðj ¼ 1; 2; 3Þ

dJ ¼ d k1k2k3ð Þ ¼ J
X

3

j¼1

dkj

kj
¼ J

X

3

j¼1

dGH
j

ð3:398Þ

respectively, and therefore the total differential of (3.395)2 reads

dsi ¼ 2
X

N

j¼1

lj½ðk
aj

i þ AiÞdGH
i þ AjðdGH

1 þ dGH
2 þ dGH

3 � dGH
i Þ� ði ¼ 1; 2; 3Þ:

ð3:399Þ

whereby the abbreviation Aj :¼ bjJ
�ajbj is introduced.

Considering equation (3.399), the relation between changes in the KIRCHHOFF

stress and changes in logarithmic strain are described by the matrix equation
(underlined symbols denote column vectors and matrices, respectively).
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ds ¼ W � dGH with Aj :¼ bjJ
�ajbj and

ds : ¼
ds1

ds2

ds3

2

6

4

3

7

5

; dGH :¼
dGH

1

dGH
2

dGH
3

2

6

4

3

7

5

; W :¼ 2
X

N

j¼1

lj

kaj

1 þ Aj Aj Aj

Aj kaj

2 þ Aj Aj

Aj Aj kaj

3 þ Aj

2

6

4

3

7

5

ð3:400Þ

where W is the stiffness matrix.

According to DRUCKER’S stability criterion, material stability requires the matrix
W to be positive definite, which leads to certain restrictions on the values of the
material constants. One possible check for positive definiteness of the symmetric
n 9 n matrix W is using the determinant criteria

det ðWk;ljk; l  pÞ[ 0 8 p 2 1; . . .; n or det ðWk;ljk; l � pÞ[ 0 8 p 2 1; . . .; n

ð3:401Þ

which test all leading principal minors to be positive. This leads to the following
conditions to be satisfied

ðiÞ W11 [ 0

ðiiÞ W11W22 �W12W21 [ 0

ðiiiÞ det W [ 0

: ð3:402Þ

Alternatively, as noted in ABAQUS
�, positive definiteness of the symmetric

3 9 3 matrix W exists if the tensor invariants, i.e. the coefficients of the charac-
teristic polynomial of W, PðkÞ ¼ IIIW � IIWkþ IWk2 � k3, are positive

ðiÞ IW ¼ trW [ 0

ðiiÞ IIW ¼
1
2

tr2W� trW2
� 	

[ 0

ðiiiÞ IIIW ¼ det W [ 0

ð3:403Þ

Using the example of the uniaxial deformation mode with the 1-direction being
the loading direction in conjunction with (3.395)2, the lateral deformation k3 ¼ k2

is implicitly given through ðs2 ¼ s3 ¼ 0 and J ¼ k1k
2
2Þ

g k1; k2ð Þ �
X

N

j¼1

lj

aj
kaj

2 � J�ajbj
� 	

¼
X

N

j¼1

lj

aj
kaj

2 � k1k
2
2

� 	�ajbj
h i

¼ 0 ð3:404Þ

In ABAQUS
�, for given sets of material parameters, the stability check is per-

formed. The above conditions (i) to (iii) are tested by incrementing k1 at intervals
of Dk1 ¼ 0:01 in the range 0:1  k1  1:0 (compression) and 1:01  k1  10:0
(tension). For given k1 and the order of series expansion N [ 1, (3.404) cannot be
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solved analytically, and root finding regarding (3.404) must thus be performed
numerically. In this context ABAQUS

� utilizes a NEWTON’S method to find corre-
sponding k2 values for given values of k1.

Similarly to the presented approach, the principal KIRCHHOFF stresses based on
the OGDEN strain–energy form for slightly compressible materials (3.398), as used
to characterize human soft tissue material in Chap. 5, (3.272)2, read

si ¼ 2
X

N

j¼1

lj

aj
J�

aj
3 kaj

i �
1
3

X

3

k¼1

kaj

k

 !

þ j

Dj
J J � 1ð Þ2j�1

" #

ð3:405Þ

Considering the total differential of (3.405) the relation between changes in the
KIRCHHOFF stress and changes in logarithmic strain can be described by the matrix
equation (3.400) whereby the stiffness matrix is defined by

W :¼ 2
3

X

N

j¼1

lj

A1 þ Ap Ao þ Ap An þ Ap

Ao þ Ap A2 þ Ap Am þ Ap

An þ Ap Am þ Ap A3 þ Ap

2

4

3

5 ð3:406Þ

using the abbreviations

Ai :¼ 1
3

H ð3kaj

i þ
X

3

k¼1;

kaj

k Þ ði ¼ 1; 2; 3Þ

Am :¼ � 1
3

H 2ðkaj

2 þ kaj

3 Þ � kaj

1

 �

An :¼ � 1
3

H 2ðkaj

1 þ kaj

3 Þ � kaj

2

 �

Ao :¼ � 1
3

H 2ðkaj

1 þ kaj

2 Þ � kaj

3

 �

Ap :¼ 2j

Dj
ðk1 þ k2k3Þ; H :¼ J�

1
3aj

k1 :¼ ðJ � 1Þ2j�1; k2 :¼ ðJ � 1Þ2j�2; k3 :¼ ð2j� 1Þ J2

ð3:407Þ

Check for material stability is performed analogue to the Hyperfoam model
(3.274).

3.4.10 Restrictions Based on Classical Linear Theory

Irrespective of the DRUCKER criterion, conclusions on the material parameters of
the OGDEN–HILL model and the OGDEN model for highly compressible and slightly
compressible isotropic materials, respectively, can be drawn from the relations
governing the linear elastic regime. At the initial stress-free reference state, the
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strain–energy function must be consistent with the linear theory of isotropic
elasticity, appropriate for small deformations.

Uniaxial Deformation: According to (3.253)2 the coordinates of the first
PIOLA–KIRCHHOFF stress tensor read PI

ii ¼ ow=oki. Using (3.96) and (3.99) one finds
PI ¼ F�1 � s and further with regard to (3.188) and (3.274) the following
expressions for the coordinates of the first PIOLA–KIRCHHOFF stress for high com-
pressible materials (OGDEN–HILL model) in the case of uniaxial loading in
1-direction ðPI

22 ¼ PI
33 ¼ 0; k2 ¼ k3 and J ¼ k1k

2
2;Þ are obtained:

PI
11¼ 2

X

N

j¼1

lj

aj
kaj�1

1 �k�1
1 J�ajbj

� �

; PI
22¼ f k1;k2ð Þ�

P

N

j¼1

lj

aj
kaj�1

2 �k�1
2 J�ajbj

� �

¼ 0

ð3:408Þ

According to (cf. Attard and Hunt 2004) the initial YOUNG modulus E0 is
defined as

E0 :¼ oPI
11

ok1













k1¼1;k2¼1

ð3:409Þ

so that with regard to (3.408)1 E0 in the case of the OGDEN–HILL model reads:

E0¼
oPI

11

ok1













k1¼1;k2¼1

¼2k�1
1

X

N

j¼1

lj

aj
aj�1
� 	

kaj�1
1 þJ�ajbj k�1

1 þajbjJ
�1 oJ

ok1

� �� �
















k1¼1;k2¼1

¼2
X

N

j¼1

lj 1þbj
oJ

ok1













k1¼1;k2¼1

 !

ð3:410Þ

On the basis of (3.189) and with regard to k2 ¼ k3, which implies J ¼ k1k
2
2, the

derivation oJ=ok1 reads

oJ

ok1













k1¼1;k2¼1

¼ o

ok1
k1k

2
2

� 	













k1¼1;k2¼1

¼ k2
2 þ 2k1k2

ok2

ok1













k1¼1;k2¼1

¼ 1þ 2
ok2

ok1













k1¼1;k2¼1

: ð3:411Þ

It is to note that the derivation ok2=ok1 in (3.411) represents the derivation of
the material specific dependence (implicit relation) of both stretches k1 and k2

resulting from (3.408)2 which can be constituted from (3.408)2 as follows

oPI
22

ok1













k1¼1;k2¼1

¼ 2k�1
2

X

N

j¼1

lj

aj
aj � 1
� 	

kaj�1
2

ok2

ok1
þ J�ajbj k�1

2
ok2

ok1
þ ajbjJ

�1 1þ 2ð Þ ok2

ok1

� �� �
















k1¼1;k2¼1

¼
X

N

J¼1

lj 1þ 2bj

� 	ok2

ok1













k1¼1;k2¼1

þbj

" #

� ok2

ok1













k1¼1;k2¼1

X

N

j¼1

lj 1þ 2bj

� 	

" #

þ
X

N

j¼1

ljbj ¼ 0

ð3:412Þ
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and thus finally

ok2

ok1













k1¼1;k2¼1

¼ �
X

N

j¼1

ljbj

 !

X

N

j¼1

lj 1þ 2bj

� 	

" #�1

ð3:413Þ

Substituting (3.413) in (3.411) and further substituting in (3.410) leads to E0 for
the OGDEN–HILL model

E0
Ogden�Hill

¼ o

ok1
PI

1 jk1¼k2¼1 ¼ 2

P

N

j¼1
lj

 !2

þ3
P

N

j¼1
lj

P

N

j¼1
ljbj

P

N

j¼1
ljð1þ 2bjÞ

ð3:414Þ

in consistence with elastic theory.

Similarly, for the OGDEN model for slightly compressible materials the
following expression for E0 is obtained

E0
Ogden

¼ o

ok1
PI

1 jk1¼k2¼1 ¼
3
P

N

j¼1
D�1

j

P

N

j¼1
lj

P

N

j¼1
D�1

j þ 1
6

P

N

j¼1
lj

: ð3:415Þ

In addition, the uniaxial load case may be used to establish a relation between
k1 and k2 as follows: With regard to k2 6¼ 0 and J ¼ k1k

2
2 (3.408)2 reads

X

N

j¼1

lj

aj
kaj

2 � J�ajbj
� 	

¼
X

N

j¼1

lj

aj
kaj

2 � k1k
2
2

� 	�ajbj
h i

¼ 0 ð3:416Þ

For N [ 1, equation (3.416) cannot be expressed explicitly in terms of k1 and k2

respectively. However, it is satisfied if each of the N-terms vanishes. It is thus
sufficient to consider one term to establish the following relation between the
principal stretches k1 and k2. For the j-th term in (3.416) the following expression
is found (Silber and Steinwender 2005)

k2 ¼ f k1ð Þ ¼ k
� bj

1þ2bj

1 : ð3:417Þ

Equation (3.417) furthermore relates the bj, which determine the degree of
compressibility for each term of the strain–energy function, to the generalized
POISSON’S ratio mj of each of the N terms. By utilizing GH

2 ¼ GH
3 ¼ �mGH

1 (in the
case N = 1) for uniaxial tensile loading and GH

i ¼ ln ki (see (3.396)), the single mj

can be expressed through mj ¼ bj=ð1þ 2bjÞ (see (3.275)). If b is equal to a con-
stant value for all N terms, a single Poisson’s ratio m exists.
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Simple Shear Deformation: In the case of finite deformations the motion v and
the deformation gradient F of the homogenous plane-strain simple shear defor-
mation is given by (Silber and Steinwender 2005)

x ¼ v X; tð Þ ¼ X1 þ c tð ÞX2½ �e1 þ X2e2 þ X3e3; F ¼ xr ¼ I þ ce1e2 ð3:418Þ

where cðtÞ :¼ KðtÞ=H is the shear gradient with the constant shear velocity KðtÞ ¼
v0t (see Fig. 3.35).

The right CAUCHY–GREEN deformation tensor C is thus given by C :¼ FT � F ¼
I þ cðe1e2 þ e2e1Þ þ c2e2e2: Transformation of C in diagonal form leads to the
following eigenvalue problem C � jiIð Þ �mi ¼ 0 ði ¼ 1; 2; 3Þ; where the ji are
the eigenvalues and the mi are the corresponding eigenvectors of C: This

Fig. 3.35 Simple shear deformation of a parallelepiped in the x1-x2-plane
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eigenvalue problem has a set of non-vanishing solutions j1; j2; j3 if the deter-
minant of the coefficients vanishes, i.e.

detðC � jiIÞ ¼ 0; PðjiÞ ¼ ð1� jiÞ½ð1� jiÞð1� ji þ c2Þ � c2� ¼ 0: ð3:419Þ

Equation (3.419)2 is a cubic equation in ji and its roots k2
i � ji (i = 1,2,3)

represent the squared principal stretches of the right stretch tensor U (see (3.182)
in Sect. 3.2.6.1). The solution of (3.419)2 leads to the following set of principal
stretches as functions of the shear gradient c

k1;2 cð Þ ¼ ffiffiffiffiffiffiffiffi

j1;2
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ c2

2
� c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ c
2

� �2
r

s

k3 ¼
ffiffiffiffiffi

j3
p ¼ 1:

ð3:420Þ

According to (3.420) the stretches (eigenvalues) ki depend solely on the shear
deformation c such that according to (3.185), the strain energy function is also only
a function of c:

wðCÞ ¼ w k1 cð Þ; k2 cð Þ; k3 cð Þ½ � ¼ w cð Þ ¼ w c tð Þ½ �: ð3:421Þ

The initial shear modulus may be generated as follows: from (3.242) it follows
D ¼ F�T � _C � F�1

� 	

=2 such that inserting in (3.150) and rearranging and solving
for _w and using (3.96) leads to the following equality

_w ¼ JS � �D ¼ PI � � _F: ð3:422Þ

Together with (3.421) and the time derivative of the deformation gradient
_F ¼ _ce1e2 following from (3.417)2 as well the representation of the first PIOLA–

KIRCHHOFF stress tensors with respect to an OBS, PI ¼ PI
ijeiej results from the RHS

of (3.422) to

_w � d

dt
w cðtÞ½ �f g ¼ dw

dc
_c ¼ PI � � _ce1e2ð Þ � PI � �e1e2

� 	

_c ¼ PI
21 _c: ð3:423Þ

For arbitrary _c and by comparison of the underlined terms in (3.423) the cor-
relation between the shear coordinate PI

21 of the first PIOLA–KIRCHHOFF stress
tensors and the shear deformation c follows to

PI
21 ¼

ow

oc
¼ o

oc
w k1 cð Þ; k2 cð Þ; k3 cð Þ½ �f g ¼

X

3

i¼1

ow

oki

oki

oc
ð3:424Þ

Analogue to the definition of the initial YOUNG’S modulus E0 :¼
oPI

11=ok1







k1¼1;k2¼1
, the initial tangent shear modulus can be defined as l0 :¼

oPI
21=oc







c¼0;k1¼1;k2¼1
. Using (3.424) the initial tangent shear modulus yields
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l0 ¼
oPI

21

oc













c¼0;k1¼1;k2¼1

¼ o

oc

X

3

i¼1

ow

oki

oki

oc
















c¼0;k1¼1;k2¼1

¼ o2w

oc2













c¼0;k1¼1;k2¼1

: ð3:425Þ

In conjunction with (3.421) the following derivatives arise

ok1

oc
j c¼0 ¼ �

ok2

oc
jc¼0 ¼

1
2
;
o2k1

oc2
jc¼0 ¼

o2k2

oc2
jc¼0 ¼

1
4
;
oJ

oc
jc¼0 ¼

o2J

oc2
jc¼0 ¼ 0:

ð3:426Þ

Considering the OGDEN–HILL model (3.209) together with (3.421), initial tan-
gent shear modulus l0 thus derives to

l0
Ogden�Hill

¼ o2w

oc2
jc¼0; k1¼k2¼1 ¼

X

N

j¼1

lj: ð3:427Þ

In the same manner, for the OGDEN model for slightly compressible materials,
l0 is found identical to (3.427)

l0
Ogden

¼ o2w

oc2
jc¼0; k1¼k2¼1 ¼

X

N

j¼1

lj: ð3:428Þ

Volumetric Deformation: The initial tangent bulk modulus K0 at infinitesimal
strains can be related to the material constants of the OGDEN–HILL model. The bulk
modulus is defined as (Ryder 2007)

K0 :¼ �V
op

oV
with p ¼ � ow

oJ
ð3:429Þ

where p represents the volumetric stress and hydrostatic pressure (see (3.258) and
(3.264)), respectively. Since the principal stretches kj are identical under volu-
metric deformation, the volume ratio (in the case of homogeneous deformation)
becomes J ¼ VV�1

0 ¼ k1k2k3 ¼ k3
v . The initial bulk modulus thus derives using

the derivative of the first PIOLA–KIRCHHOFF stress measure with respect to J with
J ! 1 to account for the initial stress-free state to

K0
Ogden�Hill

¼ �J
o2w

oJ2
jJ¼1 ¼ �J
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� 2
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Jaj=3 � J�ajbj

� �

* +" #

jJ¼1

¼ 2
X

N

j¼1

lj
1
3
þ bj

� �

: ð3:430Þ

Similarly, for the Ogden model for slightly compressible materials the
following expression for K0 is obtained
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K0
Ogden

¼ �J
o2w

oJ2
jJ¼1 ¼ �J
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oJ
�
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j¼1

2j

Dj
J � 1ð Þ2j�1

* +" #

jJ¼1
¼ 2

D1
ð3:431Þ

where all terms of the derivative of the expression in angle brackets with j [ 1
vanish.

If the elastic modulus E0, the initial shear modulus l0 and/or the initial bulk K0

modulus are determined from experiments, they define dependencies among the
material parameters which can be used in the parameter optimization process.
Furthermore, from equations (3.427) and (3.428) as well as (3.430) and (3.431), a
stress-free reference state is satisfied if l0 and K0 (at small strains and under
assumption of isotropy, E0 is clearly related to l0 and K0) are positive values
which lead to sufficient restrictions on the parameters lj, bj and D1 in terms of the
following inequalities

Ogden�Hill model (highly comp. Mat.): l
j
[ 0 and b

j
[ � 1

3

; ð3:432Þ

Ogden model (slightly comp. Mat.): lj [ 0 and D1 [ 0: ð3:433Þ

Using (3.275)3, inequality (3.432)2 implies mj [ � 1 as a lower bound
restriction.

3.4.11 Constitutive Inequalities

As already introduced with the concept of the DRUCKER stability criterion,
restrictions on the strain–energy function may be paraphrased with the concept of
‘stress increase is accompanied with strain increase’, i.e. physically reasonable
results are to be ensured. On the basis of this concept Baker and Ericksen (1954)
intuitively proposed inequalities, the so-called BAKER–ERICKSEN inequalities, which
were based on the principle that under the assumption of isotropy the largest
principal stress should always occur in the direction of the largest principal stretch.
The difference of pairs of CAUCHY stress components must thus have the same sign
as the difference of their conjugate deformation measures. This can reasonably be
formulated as

Si � Skð Þ ki � kkð Þ[ 0 , Si � Sk

ki � kk
[ 0 for ki 6¼ kk ð3:434Þ

where Si is a principal CAUCHY stress component and ki is the conjugate principal
stretch component. Using the stress coordinates of the CAUCHY stress tensor
(3.253)1 Si ¼ kiJ�1ow=oki, the inequality of (3.434) can be written as

kiow=oki � kkow=okk

ki � kk
[ 0 for ki 6¼ kk ð3:435Þ
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where w denotes the strain–energy function.

As suggested by physical evidence, Si is a strictly increasing function of its
conjugate ki. Thus, considering the above relation, SiðkiÞ, the strain–energy
function is required to be strictly convex (cf. remarks below) and thus must hold
(Marsden and Hughes 1983),

o2w

ok2
i

[ 0 ði ¼ 1; 2; 3Þ: ð3:436Þ

Condition (3.434) and (3.436) are referred to as the first and second Baker–
Erickson inequalities.

Remarks:
A function is convex if it satisfies one of the following conditions of convexity:

(i) As outlined in Ciarlet (1989), a function f is convex, or strictly convex if the
inequalities are strict, if the following inequality holds:

f ðhuþ ð1� hÞvÞ  hf ðuÞ þ ð1� hÞ f ðvÞ for u; v 2 U; u 6¼ v and 0  h  1

ð3:437Þ

with u and v being two distinct points of convex subset U of a vector space,
i.e. for all u and v in that subset and h in the interval h 2�0; 1½ all points
f ðhuþ ð1� hÞvÞ are situated in that subspace.

(ii) First order condition: a differentiable function f is convex on U, or strictly
convex if the inequalities are strict, if the following inequality holds:

f ðvÞ � f ðuÞ þ f 0ðuÞðv� uÞ for u; v 2 U; u 6¼ v: ð3:438Þ

Geometrically speaking (3.437) requires the function f to lie above any tan-
gent plane.

(iii) Second order condition: a twice differentiable function f is convex on U, or
strictly convex if the inequalities are strict, if the following inequality holds:

f 00ðuÞðv� u; v� uÞ � 0 for u; v 2 U; u 6¼ v: ð3:439Þ

Beside the BAKER–ERICKSEN inequalities, other classes of inequalities such as the
following exist

• HILL-inequalities (Hill 1970)
• LEGENDRE–HADAMARD condition (Hadamard 1903)
• QUASI-convexity condition of MORREY (Morrey 1952)
• COLEMAN–NOLL condition (Coleman and Noll 1959)
• Concept of polyconvexity (Ball 1977)
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On the basis of HILL’S inequality for instance (Ogden 1972a), deduced for
incompressible materials, using a strain-energy function of the form (see (3.203) in
Sect. 3.2.6.2)

w ¼
X

N

j¼1

lj

aj
kaj

1 þ kaj

2 þ kaj

3 � 3
� 	

ð3:440Þ

the following restriction on the parameters

ljaj [ 0 ðj ¼ 1; . . .;NÞ: ð3:441Þ

Equation (3.441) is required to hold for each term j of the series expansion of
(3.440) with no summation over j.

The latter class of inequalities of the above listed, the polyconvexity require-
ment (polyconvexity guarantees the existence of real wave speeds in the material
for all possible deformations), was shown by BALL to be crucial for a strain-energy
function to clear out the conflicts with physical requirements (e.g. buckling phe-
nomena, (3.393)1 and (3.393)2. In Ball (1977), it is outlined that a strain–energy
function is polyconvex if it is convex in its respective arguments, namely F, Cof
F and det F (see Sect. 3.2.6.2 Eq. (3.206))

w Fð Þ ¼ w F;Cof F; det Fð Þ ð3:442Þ

where the cofactor of the deformation gradient F according to (3.207)4 is defined
as Cof F :¼ ðdet FÞF�T .

The criterion of polyconvexity leads, according to Ciarlet (1988), p.174–181 et
seq. and Dhondt (2004), p.189, to the definition of a general class of strain–energy
functions of the form (without the normalizing constant 3 ¼ tr I)

wðk1; k2; k3Þ ¼
X

m

i¼1

aiðkci
1 þ kci

2 þ kci
3 Þ þ

X

n

j¼1

bj Jdjðk�dj

1 þ k�dj

2 þ k�dj

3 Þ þ f ðJÞ

ð3:443Þ

with the following requirements on the coefficients and exponents respectively,
and the function f ðJÞ,

ai [ 0 and ci � 1; 1 i  m;

bj [ 0 and dj� 1; 1  j  n;

f ðJÞ is convex for 0  J  þ1:
ð3:444Þ

Comparison of the OGDEN–HILL model, (3.209), with (3.443) with bj ¼ 0 leads
with the polyconvexity requirements (3.444), to the following restrictions on lj

and aj of (3.209)

lj [ 0 and aj � 1 for j ¼ 1; . . .;N: ð3:445Þ
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To show convexity of the volumetric term of the OGDEN–HILL Model, the
second derivative with regard to (3.209)2 yields

d2f

dJ2
¼ 2

X

N

j¼1

lj
1
aj
þ bj

� �

J�aj bj�2� 0 ð3:446Þ

which is true using the sufficient restrictions lj [ 0, aj [ 0 and bj [ 0. Other
sufficient case distinctions lead to negative values of bj.

The OGDEN model for slightly compressible materials (3.208)2, however, is not
a special case of (3.443) and can thus not be directly compared.

In the following, the BAKER–ERICKSEN inequalities (3.434) and (3.436) are
applied to the OGDEN–HILL model (3.274), and the OGDEN model for slightly
compressible materials (3.272)2, to deduce implications on the material constants.
Using (3.99), (3.253)1 and (3.274), the principle CAUCHY-stresses deduced from the
OGDEN–HILL model read

Sii ¼ 2J�1
X

N

j¼1

lj

aj
kaj

i � J�ajbj
� 	

: ð3:447Þ

and in conjunction with (3.434) the first Baker–Ericksen inequality yields

2J�1
X

N

j¼1

lj

aj
ðkaj

i � kaj

k Þðki � kkÞ[ 0: ð3:448Þ

A sufficient condition regarding the choice of parameter lj in (3.448) is

lj [ 0 for j ¼ 1; . . .;N ð3:449Þ

with no restrictions on parameter aj. Due to the form of the first BAKER–ERICKSEN

inequalities no restriction can be deduced for parameter bj.

Furthermore, from (3.436) the following inequalities for the OGDEN–HILL model
are obtained which restrict the choice of parameter aj and bj

2
X

N

j¼1

lj

aj
ðaj � 1Þkaj�2

i þ ðajbj þ 1Þk�2
i J�ajbj

h i

[ 0: ð3:450Þ

Sufficient conditions regarding the choice of parameters lj, aj and bj in (3.450)
are

lj [ 0 and aj [ 1 and bj [ � 1 for j ¼ 1; . . .;N: ð3:451Þ

The bj values are further restricted due to consistence with classical linear
theory, cf. (3.432). From comparison with (3.445) it can be seen that the restric-
tions vary only slightly.
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Similarly, the principle CAUCHY-stresses deduced from the OGDEN model for
slightly compressible materials (3.272)2, read

Sii ¼
2
3

X

N
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aj
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3�1 3kaj

i �
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 !
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Dj
J � 1ð Þ2j�1 ð3:452Þ

In conjunction with (3.434) the first BAKER–ERICKSEN inequality yields
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i � kaj

k Þðki � kkÞ[ 0: ð3:453Þ

A sufficient condition regarding the choice of parameter lj in (3.453) is

lj [ 0 for j ¼ 1; . . .;N ð3:454Þ

with no restrictions on parameter aj. Due to the form of the first BAKER–ERICKSEN

inequalities no restriction can be deduced for parameter Dj.
Based on the second BAKER–ERICKSEN inequalities (3.436), the following

inequalities for the OGDEN model for slightly compressible materials (3.452) are
obtained which restrict the choice of parameter aj and Dj
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Sufficient conditions regarding the choice of parameters lj, aj and Dj in (3.451)
are

lj [ 0 and aj [
3
2

and Dj [ 0 for j ¼ 1; . . .;N ð3:456Þ

or

lj\0 and aj\� 3 and Dj [ 0 for j ¼ 1; . . .;N: ð3:457Þ

Summary:
As outlined in Tables 3.5 and 3.6, from linear theory, it is required that

PN
j¼1 lj [ 0 or sufficiently lj [ 0 for all j. This disqualifies the sufficient condi-

tions of lj\0 and aj\� 3 for the slightly compressible OGDEN model.
In addition to the OGDEN model, the anisotropic hyperelastic material model

based on an invariant formulation proposed by Gasser et al. (2004) and Holzapfel
et al. (2000), in the form implemented by Abaqus (2010), is employed in
the parameter optimization process. This provides additional parameter sets for
long-term gluteal fat and transversally loaded (passive) muscle tissue behavior.
The material is assumed to be isotropic by specific choice of parameter j.
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The strain–energy function corresponding to the HOLZAPFEL–GASSER–OGDEN–
model reads (see Sect. 3.5.6.3, Eq. (3.229))

w ¼ C10ð�CI � 3Þ þ 1
2D
ðJel � 2 ln Jel � 1Þ þ k1

2k2

X

N

j¼1

ðek2 Ejh i2 � 1Þ ð3:458Þ

with

hEji ¼ jð�CI � 3Þ þ ð1� 3jÞð�CIVj � 1Þ

where hEji ¼
0; Ej \ 0

Ej; Ej [ 0

(

where the first term in (3.458) represents the

(isotropic) NEO–HOOKEAN form describing the deviatoric material response with

the first deviatoric strain invariant �CI ¼ k
2
1 þ k

2
2 þ k

2
3 where the �ki are the devia-

toric principal stretches �ki ¼ J�1=3ki. �CIVj is a pseudo-invariant given by �CIVj ¼
k2

1 cos2 #j þ k2
2 sin2 #j where # represents the mean fibre orientation. The first term

in (3.458) is augmented by a second volumetric term to introduce compressibility.
The third term accounts for material anisotropy and is formulated in terms of
exponential function to account for stiffening effects. C10;D; k1; k2; j are material
parameters to be determined by experiment. In the isotropic case j is set to
j ¼ 1=3 and thus

Ej;iso ¼ 1=3 �CI � 1 with Ej ¼
0; Ej \ 0

Ej; Ej � 0:

(

ð3:459Þ

From (3.458) and following the outlines given previously, the initial bulk
modulus derives to

Table 3.6 Summary of sufficient restrictions on the material parameters for the OGDEN model for
slightly compressible materials

Ogden Slightly Compr. lj aj Dj

Baker–Ericksen lj [ 0 aj [ 3=2 Dj [ 0

lj\0 aj\� 3 Dj [ 0

Linear theory lj [ 0 None D1 [ 0

Table 3.5 Summary of sufficient restrictions on the material parameters for the OGDEN–HILL

foam model

Ogden–Hill foam lj aj bj

Polyconvexity lj [ 0 aj � 1 bj [ 0

Baker–Ericksen lj [ 0 aj [ 1 bj [ � 1

Linear theory lj [ 0 None bj [ � 1=3
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K0 ¼ �J
o2w

oJ2
jJ¼1 ¼

2
D
: ð3:460Þ

Equation (3.460) sufficiently restricts parameter D to D [ 0.
The shear modulus at the initial stress-free reference state yields

l0 ¼
o2w

oc2
jc¼0;k1¼k2¼1 ¼ 2C10 ð3:461Þ

with the single derivatives given in (3.426) together with

o

oc
I1 jc¼0; J¼k1¼k2¼k3¼1 ¼ 0;

o2

oc2
I1 jc¼0; J¼k1¼k2¼k3¼1 ¼ 2

and
o2

oc2
ek2E

2
j;iso jc¼0; J¼k1¼k2¼k3¼1 ¼ 0:

ð3:462Þ

Equation (3.461) sufficiently restricts parameter C10 to C10 [ 0.
In the context of material stability, it is shown in Balzani et al. (2006), for the

material constants k1 and k2 to require k1 � 0 and k2 [ 0.

3.5 Biomechanical Hypothesis

3.5.1 Introduction

Evaluation of the effectiveness of technical body support systems with respect to
preventive issues considered from a biomechanical point of view must be based on
an investigation of the effects on the respective body tissues. In this context
however, a qualified ‘‘biomechanical hypothesis’’ regarding mechanical tissue
stress thresholds for deeper tissues region is to be established.

For instance, primary goal when developing bedding systems in the area of
medical care must include pressure sore prevention. The term pressure sore is
defined by Chapman (1986) as follows: ‘‘a pressure sore is a limited area of cell
damage caused directly by pressure effects or, is caused by frictional effects and
accompanying mechanical shear forces applied to the tissue’’. A generally
accepted hypothesis assumes that by applying pressure on the tissue and the hereon
related pressure distribution in deeper tissue regions causes compression of the
(micro-) vasculature and thus reducing the blood and oxygen transport, respec-
tively, resulting in anaerobic cell metabolism accompanied by acidosis with
increased cell permeability and local edema formation. Prolonged anaerobic
metabolism finally leads to cell death (necrosis) and thus to sore development.

Already in 1722, the French surgeon De La Motte documented that pressure as
extrinsic factor plays an important role in the occurrence of tissue necrosis, but the
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underlying illness however, to be the dominant evil. In 1749, the French physician
and economist François Quesnay assumed the ‘nerves which attend the arteries’
responsible for the development of pressure sores. The most wide spread
hypothesis to date was introduced by the French surgeon Alexis Boyer in 1818
who ascribed pressure sore development to compression of blood vessels. Kers-
chensteiner reported in 1859, and later, in 1918 Wieting and Dietrichs about
pressure sores that initiate inside the tissue and progress towards the skin.
Furthermore in 1879, the French neurologist J. M. Charcot proposed that nerve
injury released some factor leading to sore formation. This theory prevailed in
spite of attempts by people like P. Marie and G. Roussy who, in 1914, argued that
pressure ulcers developed in all debilitated patients, not just in paraplegics.

From the numerous investigations in the last century, the works of Trumble
(Trumble 1930) and Landis (Landis 1930) are especially meaningful. In 1930, they
published their researches on the effects of prolonged pressure and critical
thresholds of reduced blood flow within blood vessels. The most frequently quoted
value of 32 mmHg (4.3 kPa) measured by Landis in the finger nail bed at the
arteriolar end of a capillary loop and 12 mmHg at the venule end are still in use,
especially among manufactures of body support devices. The claim in conjunction
with these values was that any exceeding pressures result in occlusion of the blood
vessels and lead to ischaemia and finally to cell death. In 1941, however, Landis
itself revised these thresholds to the range of 46–50 mmHg. Later in 1953, Husain
observed that local pressure on the skin affected more blood vessels in the skin and
in subcutaneous tissue than in muscle tissue while however, muscle tissue expe-
rienced higher damage (Husain 1953).

Besides the above mentioned investigations of Trumble and Landis which
support the hypothesis that prolonged pressure results in tissue necrosis as a result
of impaired capillary perfusion and thus leads to hypoxia of the skin and under-
lying tissues (cf. also Kosiak 1959, 1961; Daniel et al.1981; Larsen et al. 1979)
there exist two other main hypotheses regarding pressure sore etiology. One is that
shear strain and shear deformation as major mechanisms (Reichel 1958; Dinsdale
1974) or most recently (Celeen et al. 2008), and another one assumes that external
loads impairs interstitial fluid flow and changes interstitial pressure resulting in
nutritive injury to the affected cells and impaired lymphatic drainage of metabolic
waste products and thus breakdown of the metabolic cell processes, cf. e.g.
Krouskop (1983) or Miller (1981). The first hypothesis of the pathogenesis of
pressure sores has led to more recent studies focusing on the study of the effects of
loading magnitude and loading duration.

The existing knowledge has predominantly been established via in vivo and in
vitro animal experiments as briefly outlined in the following. An additional
overview about the subsequent sections is given in Bader et al. (2005).
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3.5.2 Threshold Values for Animal Tissue

Kosiak, in 1959 and 1961, with focus on ischaemia, examined the effects of time-
pressure relationships in dog and rat experiments suggesting an inverse relation-
ship between the time of applied pressure and the pressure value causing tissue
damage (Kosiak 1959, 1961). Similarly, in 1974, Dinsdale from swine experiments
(Dinsdale 1974), in 1976, Reswick and Rogers from a human study (Reswick and
Rogers 1976), in 1981, Daniel from swine experiments (Daniel et al. 1981), and
Salcido from rat experiments (Saldico 1994) established pressure–time curves (see
Fig. 3.36b). It was proposed in a recent study however, that such pressure–time
curves should be more sigmoid in shape rather than hyperbolic (see Fig. 3.36a),
(Linder-Ganz and Gefen 2004).

Studies on limited interstitial fluid flow resulting in impaired metabolic cell
processes show that external pressure further unbalances regulation processes
(Reddy et al. 1981; Zhang et al. 1997). More recent works have concentrated on
the ischaemia–reperfusion injury phenomenon associated with local tissue
destruction after tissue unloading due to waste products in the tissue as a result of
preceding ischaemia, e.g. (Grisotto et al. 2000; Nanakawa and Mori 2005; Peirce
et al. 2000). In addition to ischaemia and ischaemia–reperfusion, damage induced
through cell (shear-) deformation has been investigated indicating that increase of
tissue damage and increase of applied shear strains are related (Bouten 2001;
Breuls et al. 2003; Stekelenburg et al. 2007; Ceelen et al. 2008). Implicitly con-
firming that finding, it was shown earlier that muscle tissue can bear high
hydrostatic pressures without showing signs of necrosis (Husain 1953). Muscle
stiffening was observed as a result of prolonged compressive loading by Gefen
et al. (2005) and Linder-Ganz and Gefen (2004). Formation of edema during and
after tissue loading could possibly explain this finding. As a result it was
hypnotized that muscle tissue is exposed to higher stress situation and pressure
sores are thus additionally promoted. Amongst experiments with animals, the latter
hypothesis was supported by use of computational models.

Fig. 3.36 Pressure–time threshold curves with regard to pressure ulcer development: a recent
shape proposal by (Linder-Ganz et al. 2006), b hyperbolic shaped curves established in
1959–1994 and c combined diagrams of (a) and (b)
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From the above described animal studies it shows that ischaemia is involved in
pressure ulcer pathogenesis, but cell deformation apparently plays a major role,
particular in the beginning of sore formation. Clearly, besides the extrinsic factor
of mechanical tissue loading there exist several other intrinsic factors that increase
the risk to develop pressure sores: e.g. gender, age, skin condition, weight, mental
disability, malnourishment, moisture and incontinence.

3.5.3 Work Hypothesis

Concluding, it can be assumed that pressure sores (at the human body) develop as
a result of exceedance of mechanical tissue ‘‘stress thresholds’’ over a prolonged
period of time inside the tissue and are initiated not only from compressive stress
but rather from shear and possibly tensile stress and their coexistence, respectively.

Since to date no reliable biomechanical restrictions, i.e. mechanical limits,
exist, the authors thus assume that (at least with respect to the development of anti-
decubitus systems) a technical body support system is appropriate regarding
pressure sore prevention if (internal) tissue stresses, especially at the bone surface,
are low. The approach presented in Chap. 6 offers the possibility to objectively
determine such mechanical tissue loadings.

This hypothesis can be readily applied to the area of comfort: The effects of
(extra-corporal) body supporting systems on the human body generally cause
reactions in deeper (soft) tissue regions, especially inside the muscle tissue. This
inevitably and automatically causes disorders in terms of anxiety and muscle
tensions (in seated or recumbent posture) which lead agitation and restlessness and
pain. Insomnia and compensating body movements are the consequences
(‘‘physiological–mechanical chain’’).

Due to lack of knowledge but to at least provide a intuitive classification of the
simulated internal (human) tissue stress caused by the support systems presented in
Chap. 4, the simulated data is plotted against the limiting curves provided from the
literature as depicted in Fig. 3.36.

150 3 Fundamentals

http://dx.doi.org/10.1007/978-3-642-29003-9_6
http://dx.doi.org/10.1007/978-3-642-29003-9_6
http://dx.doi.org/10.1007/978-3-642-29003-9_4
http://dx.doi.org/10.1007/978-3-642-29003-9_4


Chapter 4
Supports

Abstract The mechanical characterization of body support materials is presented.
After an introduction of extra-corporal and intra-corporal body support devices
(Sect. 4.1), the mechanical description of polymeric soft foam material on the
microstructure and macrostructure level is introduced, (Sect. 4.2). Details
regarding the experimental approach, as well as the material parameter identifi-
cation to continuum mechanical description of the steady state (equilibrium)
elasticity, (Sects. 4.2.1.2 and 4.2.1.3), are shown. The characterisation and mod-
elling of polymeric soft foam viscoelastic material behaviour based on material
equations of nonlinear hyperelasticity and linear viscoelasticity at finite strain is
presented, (Sects. 4.2.1.4 and 4.2.1.5). Automotive and aircraft seat material
characterization is demonstrated, (Sect. 4.2.2).

4.1 Definition of General Body Supports

A technical device which provides aid to the human body, helping to prevent body
damage due to inappropriate loading in the seated or recumbent posture or during
walking or running is referred to as a support (primary and/or secondary prevention).
Such a device can also be used to support a damaged body region to enable the affected
region to regain its original physical state (tertiary prevention). Supports are differen-
tiated into extra-corporal and intra-corporal supporting devices. An extra-corporal
support has a contact interface with the skin surface. Bedding, Fig. 4.1a, seating systems
(mattresses, automotive and airplane seats, wheel chair cushions, saddles etc.), orthotics,
prostheses or shoes including soles, Fig. 4.1b are included. Intra-corporal supports
maintain a contact interface with internal body surfaces, such as a vascular wall with a
stent or an artificial knee joint Fig. 4.1c, d or a tooth implant with surrounding tissue.

G. Silber and C. Then, Preventive Biomechanics,
DOI: 10.1007/978-3-642-29003-9_4, � Springer-Verlag Berlin Heidelberg 2013
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4.2 Body Support Materials

4.2.1 Polymeric Soft Foams for Bedding Systems

Man-made cellular solids, such as soft polymeric foam, represent an important
class of engineering materials. This synthetic cellular material was first manu-
factured at the beginning of the twentieth century. Due to its unique properties it
has found application in many fields of industry, including the automotive and
aircraft industry, as well as in healthcare.

Body supports in the field of medical care, such as bedding, seating devices or
operation table overlays, as a rule contain soft polymeric foam components in the tissue-
support interface. Used in conjunction with long-term care or immobilized patients,
body support devices require special consideration, since material properties and
geometry play a major role in pressure sore development and discomfort related issues.

This section demonstrates the effects of open-cell soft polymeric foam supports on
tissue, using numerical simulation tools. After elucidating the microstructure of poly-
meric foam materials a phenomenological approach to mechanical foam character-
ization is described. Together with the subject matter presented in Sect. 3.4, and based
on experimental testing, foam material parameters are derived by means of parameter
optimization. In this process long- and short-term foam behaviour is described.

Fig. 4.1 Extra-corporal supports: a body/support system, and b foot/shoe sole; intra-corporal
supports, c knee joint/FRANKFURT INLAY (supervision by Prof. Dr. H.-R. Ludwig, University of
Applied Sciences Frankfurt/Main, Germany), and d vascular wall/stent
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4.2.1.1 Material Characterization

Microstructure: Soft polymeric foams belong to a material class generally termed
cellular materials. Their microscopic structure consists of long, randomly oriented
molecular chains, which form an interconnected (cross linked and end linked)
three-dimensional network of struts, either open-cell, or plates, or closed-cell, or
both. The struts and plates form the edges and faces of the cells, whereby the cell
shape is most commonly polyhedral. The dilatational response and rubber-like
elasticity come from the material properties (flexible behavior) and the interlinked
micro-structure of the particular foam material, as well as the behavior of the
single struts and plates under loading.

An important feature of such materials is their relative density (ratio of foam
density to a reference density, usually the density of the solid foam material) which
can be as low as qR ¼ 0:001 for low-density foams. The degree of density is
determined by the technique used in the polymer production process. The low
stiffness of foams makes them ideal for cushioning since the porosity, especially in
open-cell foams, permits large volumetric change.

For illustrative purposes, in Fig. 4.2 two images, adopted from (Mills 2000),
obtained from scanning electron microscope (SEM) of open-cell and closed-cell
polymeric foams are shown. In Fig. 4.2a, the open-cell structure with single cell
ligaments forming the cell edges and their cross links at the vertices can be
distinguished. Within the cell framework, air passes freely under compression,
thus not contributing significantly to the dilatational response, when strain rates
remain moderate.

In closed-cell foams, besides cell edges and vertices, material is contained in
the cell face as well, sealing each cell off from its neighbour (cf. Fig. 4.2b). As a
consequence, gas or liquid is trapped within the cells, generally providing a stiffer
response under loading.

Different mechanical behaviour may be observed subject to the loading
direction, Fig. 4.3a, b, (Zhu 1997) in individual cells from a compression loaded
open-cell foam structure, depending on the foam generation process.

Fig. 4.2 Scanning electron microscope photographs of a open-cell PU foam and b closed-cell
PE foam
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The difference in material response is due to a possible elongation of foam cells
in the foaming (rise) direction. The cell structure and, as a result, the macro-
structure, is therefore geometrically (mechanically) anisotropic. Consequently, the
mechanical response of polymeric foams depends on the intrinsic properties of the
employed polymers, the cell architecture and the material of the cell walls. The
cell architecture is determined by the cell ligament dimensions and dimension
distribution of the cells making up the framework.

Mechanical Behaviour: In geometrically anisotropic cell structures, compression
loading perpendicular to the rise direction results in a nearly monotonic force increase,
whereas loading along the rise direction results in a distinct plateau in the load–
displacement curve. As noted in (Mills 2000), loading forces at 50% strain are about 3-
fold higher when loading perpendicular to the cell rise direction, compared to loading
along the rise direction. International standard regulations (ISO 3386, ASTM D-3574)
prescribe the compression force deflection value (CFD) for soft urethane foams to be
determined by compression perpendicular to the foam rise direction.

When loaded in compression, open-cell foam exhibits characteristic behaviour. A
representative material response from stepwise uniaxial compression loading of

Fig. 4.3 PU-foam cells (a-I) undeformed configuration, (a-II) compressed along the rise direction
and (b-I) undeformed configuration, (b-II) compressed perpendicular to the rise direction

Fig. 4.4 Representative
force–displacement curve
obtained from stepwise
uniaxial loading of low-
density open-cell PU-foam.
Characteristic regions of
elastomeric foam behavior
are labeled: (I) linear elastic
at small strain, (II) elastic
buckling, and (III)
densification
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open-cell PU-foam is depicted in Fig. 4.4 (for clarity in Fig. 4.4 the compressive
force axis is mirrored). In the densifying process, three stages can be distinguished:
(I) a linear elastic region at small strain (\4–5%) due to cell wall bending, (II) a
plateau of deformation at moderate force increase (the plateau is distinctive at open-
cell PU foams), caused by elastic buckling of the cell ligaments (cf. Fig. 4.3a II), and
(III) a densifying region where cell edges touch, thus increasingly resistant to further
densification. During this state material blocking occurs, resulting in a rapid increase
of loading force with minor displacement (see Sect. 3.2.2.1 in ‘‘Behaviour of human
soft tissue and polymer soft foams’’). A detailed overview about polymer physics
can be found in (Treloar 2005), and information on structure and micromechanics in
(Gibson and Ashby 1997).

4.2.1.2 Experiments I: Elasticity

Experimental Set Up: To mechanically describe foam materials and characterize
long-term foam material parameters, the following deformation modes were dis-
placement-driven to create more than one state of strain:

1. quasi-static compression test using a plate
2. quasi-static compression test using a hemispherical indenter (Ø100 mm)
3. quasi-static quad lap shear test

A zwicki Z-5.0 testing machine by ZWICK/ROELL, as depicted schematically in
Fig. 4.5 for the plate and the indenter compression test was used to produce the

Fig. 4.5 Plate compression test scheme employing a zwicki Z-5.0 testing machine: front view
without test assembly and side view with mounted transducer, plane indenter plate and foam
specimen
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particular deformation modes under quasi-static loading. The employed test
scenarios are shown below in Fig. 4.6.

Specimen: Prismatic samples were randomly extracted from a block of open-
cell polymeric soft foam material (cf. Fig. 4.7a) and subjected to plate compres-
sion tests under different climatic conditions to mechanically characterize mattress
and seat foam materials. The obtained force–displacement data of the different
foam samples were nearly identical, which suggested isotropic and homogenous
material behaviour (cf. Fig. 4.7b). The samples, however, did show a strong
non-linear dependency to temperature and humidity (cf. Fig. 4.7c). Hence, all tests
were conducted under defined conditions (20�C and 50% humidity) in a climate
chamber to ensure reproducibility, (Schrodt 2006); (Schrodt et al. 2005).

For the indentation processes (1) and (2) foam specimens with the dimensions
H 9 W 9 D = 200 9 200 9 50 mm were used, differing from samples used in

Fig. 4.6 Elastomeric foam characterization: a plate compression test, b hemispherical compres-
sion test with a rigid punch, c quad lap shearing with symmetric fixtures and d buckling phenomena
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standardized testing with an edge length of 100 mm and a prismatic shape. The
change in sample size was due to sample buckling during plate compression,
Fig. 4.8d, (Schrodt 2006).

For the quad lap shear test (3) foam specimens with the dimensions
H 9 W 9 D = 80 9 35 9 10 mm were used.

Employed Elastomeric Materials: Many varieties of polymeric soft foam
material exist, together with a wide application range in medical care and comfort
related fields. In general, the mechanical behaviour of foam materials significantly
differs. Since the primary intention of this book is to present methodological
approaches, two mechanically and chemically different foam materials are
exemplarily presented.

Material testing was performed using two foam materials, high resilient (HR)
foam, without remarkable time-dependence, and viscoelastic (VE) foam, exhib-
iting distinct retarded recovery behaviour (note that all polymeric foam materials

Fig. 4.7 Isotropy and homogeneity of soft foam samples: a segmentation of a foam block in
20 9 10 prismatic samples of edge size 100 mm, b force–displacement data of different samples
obtained from plate compression and c indentation force dependency on relative humidity,
(Schrodt 2006)

Fig. 4.8 Specimen preconditioning to eliminate stress softening: a force over time characteristic
and b force over displacement characteristic of high resilient PU foam at plate compression
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in general exhibit viscoelastic behaviour, and that the term VE refers to the brand
name of the distributing company). Both foam types belong to the polyurethane
soft foam materials and are generally composed of polyetherpolyols and isocya-
nates. The mechanical properties of these foam materials are used, amongst others,
in Chap. 6 to simulate body-support interaction. Basic technical specifications of
both foam materials are provided in Table 4.1.

Cyclic Preloading Process: Prior to the actual loading procedure the speci-
mens were preconditioned via the three deformation modes (1), (2) and (3) to
eliminate stress softening, a phenomenon referred to as the MULLINS effect (Mullins
1969). Cyclic preloading was performed by compressing (in the case of (1) and
(2)) the foam specimen up to 64% to decrease the force response of the material at
the initial virgin state during the first load cycles at constant displacement
amplitude, to reach a stabilized response. The MULLINS effect reflects material
damage incurred during previous loading, as depicted in Fig. 4.8. After the
pre-loading phase and a following rest phase of 16 h, the actual loading process
with holding times begins.

In addition to the MULLINS effect, from the force–displacement slope charac-
teristics in Fig. 4.8b it can be observed that the particular foam material exhibits
time-dependent material properties.

Experiments with Holding Times: To determine the long-term time-inde-
pendent material response, stepwise loading and unloading cycles with holding
times were performed. This allowed relaxation of the non-equilibrium stress,
separating the elastic and inelastic material properties. (James and Green 1975)
and (Van Den Bogert and De Borst 1994) proposed this cyclic procedure to
characterize filled vulcanisates. It has also been applied by (Lion 1996) and
(Hartmann et al. 2003) for rubber-like materials and by (Ehlers 2003), and
(Schrodt et al. 2005), for cellular polymers.

The increments in loading and unloading were set to steps of 2 mm for 8% of
compression during the plate experiment and subsequently two steps of 4 mm until
64% compression, corresponding to a total indenter plate displacement of 32 mm
at an initial specimen height of 50 mm. The maximum extent of compression of
the test specimen was determined by the extent to which the foam was compressed
during physical buttock-support interaction. MR-imaging of buttock-support
interaction, when in the supine position, showed that maximum compressive
(nominal) strain did not exceed 60% at the gluteal region with a total body mass of

Table 4.1 Specification of
the investigated foam
materials (CLD: compression
load deflection)

HR-Foam VE-Foam

Brand name RL 35034 apricot,
Richlux-comfort

Visco aerial,
aerial VE

Manufacturer Carpenter Dunlopillo
CLD-value 3.4 kPa (23�C) 1.6 kPa (23�C)
Density 32 kg/m3 56 kg/m3

Retardation time 0.007 s 2.4 s
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75 kg, using the foam materials subsequently described. Maximum indenter and
mid fixation plate displacement in the hemispherical punch test was 32 and 5 mm,
respectively, for the quad lab shear test.

In the testing process, a constant deformation velocity of 10 mm s-1 was used
for the single displacement increments and holding times of 3 h were maintained
after each loading step. In Fig. 4.9a the prescribed displacement–time program is
depicted and in Fig. 4.9b the force–displacement response is shown.

The force–displacement values reached after each holding period are referred to
as relaxation termination points (see ‘‘filled blue circles’’ in Fig. 4.9b). Having
reached a relaxation point, the transient change of the normal force (compressive
force) should ideally have vanished, where the difference of the total stress and the
force end value of relaxation is referred to as overstress. Corresponding termi-
nation points of the loading and unloading paths indicated the corridor comprising
the pure elastic long-term foam behaviour (see Fig. 4.9b), and served as basic
input for material parameter optimization to characterize long-term behaviour. In
the optimization process, the test scenarios were modelled and the ABAQUS

�
finite

element solver was used to solve the boundary value problem to evaluate the
model function values (see Sect. 3.4 ‘‘Parameter Identification’’).

Figures 4.12 and 4.13 depict experimental force–displacement findings of the
soft materials HR and VE (cf. outlines previously given in ‘‘Employed Elastomeric
Materials’’) based on the plate compression test, hemispherical punch test and
quad lab shear test. Characteristic behaviour is shown in Fig. 4.4 involving the
three regions 1, 2 and 3. It is also shown that the force values of the plate
compression test by far exceed those of the hemispherical punch and quad lab
shear test and that the force–displacement relation of the quad lab shear test is
nearly linear.

Fig. 4.9 a Prescribed indenter displacement program and b indenter force over indenter
displacement with non-equilibrium force path with relaxation decay and termination points (filled
circle) for high resilient PU-foam
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Boundary Conditions: During the plate compression test, the surfaces of the
support and plane indenter plate were covered with emery paper. This prevented
(undefined) sliding of the contact surfaces and produced reproducible mechanical
conditions for FE-modelling. This lateral fixation, however, led to a multi-axial
strain field in the foam material adjacent to the contact surfaces and caused
inhomogeneous lateral straining, due to shear stress.

Due to fixation via emery paper in the plate compression test the deformation
mode was not fully homogenous (see Fig. 4.10). Due to relatively low sample
thickness, compared to the sample cross section, the plate compression test led to
lateral straining of the samples with a Poisson’s ratio m = 0, such that a region of
proportional elongation with a plane stress and strain state did not exist. The stress
and strain state is thus three-dimensional. Accordingly, the stress coordinates of
the employed material models are not decoupled in the loading and in the trans-
versal direction. Hence parameter optimization cannot be done analytically (even
in the plate compression case), but must be conducted via inverse FEM (iFEM)
using an appropriate FE-model with precise modelling of the test scenario, and
using the finite element solver to provide the model function values, (see Sect.
4.2.1.3). Only at a Poisson ratio of m & 0 is it possible to optimize the material
parameters with decoupled stress coordinates, without employing FEM to solve
the boundary value problem cf. (Schrodt et al. 2005).

In the quad lap shear test, foam specimens were glued to the fixtures using a
thin film of liquid adhesive. This approach is ideal for soft elastomeric foam
materials, due to relatively low forces transmitted through the adhesive layer. The
quad lap assembly permits horizontal movement of the end plates, thus avoiding
extensive normal stress development (POYNTING-effect).

4.2.1.3 Material Identification I: Elasticity

Constitutive Equation: Polymeric soft foams exhibit more or less viscoelastic
behaviour, characterized in particular by hysteresis with force relaxation in the
force–time and force–displacement diagram (cf. Figs. 4.9, 4.12 and 4.13). Initially,
the mechanical long-term properties of the equilibrium elasticity of foam materials
HR and VE (cf. outlines given previously in ‘‘Employed Elastomeric Materials’’,
Table 4.1) based on the force–displacement data of Figs. 4.12 and 4.13 are

Fig. 4.10 Lateral straining of the test sample during plate compression testing: a sample in the
undeformed state and b sample in the deformed state with lateral straining at the edges
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evaluated. The continuum mechanical description is based on the strain energy
function (3.209) for non-linear isotropic hyperelastic highly compressible mate-
rials, which have been shown to be sufficient for soft material representation. The
KIRCHHOFF stress tensor s0 of such a model is given by (cf. Sects. 3.2, 3.2.6.4 as
well as index ‘‘0’’ which refers to the state of equilibrium elasticity according to
equation (3.274)

s0 ¼ 2
X

3

i¼1

X

N

k¼1

lk

ak
kak

i � J�akbk
� �

� �

nini

Identification of the Long-Term Parameters: The test scenarios previously
described with respect to long-term material parameter optimization were FE-
modeled and iteratively simulated in the optimization process. The corresponding
FE-models of the plate compression test, the hemispherical punch compression test
and the quad lab shear test are depicted in Fig. 4.11.

In all previously described models, foam material was modelled using fully
integrated 8-node first-order incompatible mode continuum elements with an
average element side length of 8 mm for models Fig. 4.11a, b and 1.8 mm for
model Fig. 4.11c. All three degrees of freedom for bottom foam sample nodes of
models (a) and (b) were constrained (no difference in simulation results were
observed modelling foam-support contact interactions instead of node constrain-
ing; the latter approach was thus chosen to obtain robust and fast optimization
loops). Indenters were modelled as analytical rigid bodies and the fixtures in model
(c) were assumed to be discretely rigid.

Generally, simulation of the test scenario provides (indenter) force–displace-
ment output whose deviation to the corresponding experimental data are to be
minimized (if necessary simultaneously) by a set of adequate material parameters.
Therefore, the model function values of the quad lab shear test were weighted
since the overall sum of squared residuals was unequally dominated (cf. multi-
objective optimization and objective weighting Sect. 3.4). This imbalance was due
to higher reaction force ranges occurring during the plate compression and
hemispherical punch testing, exceeding force values of the quad lab shear test by
one order of magnitude. In the parameter optimization process, restrictions as
presented in Sects. 3.4, 3.4.8–3.4.11 have been implemented. In the following,
comparison of test data with simulation output for HR-foam material, Fig. 4.12,

Fig. 4.11 Shaded contour plots of a direct stress of the plate compression test model, b direct
stress of hemispherical punch test model (section cut view) and c shear stress of the quad lap
shear test model (arrows indicate loading direction)
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Fig. 4.12 Comparison of experimental HR-foam material data with simulation output of a plate
compression testing, b hemispherical punch testing and c quad lab shear testing

Fig. 4.13 Comparison of experimental VE-foam material data with simulation output of a plate
compression testing, b hemispherical punch testing and c quad lab shear testing

Table 4.2 Long-term
material parameters of
HR-foam material

HR-Foam

j lj[MPa] aj[-] mj[-]

1 1.417421E - 02 2.070062E ? 01 1.511883E - 06
2 2.245194E - 04 6.834122E - 02 2.145391E - 03
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and VE-foam material, Fig. 4.13, is shown based on optimized long-term material
parameters provided in tables Table 4.2 and 4.3.

Identification of long-term parameters ak, lk and bk of equation (3.274) using
model parameter N = 2 is performed via the optimization routine described in
Sect. 3.4. In the quality functional (3.364), fi

M(hi, p) is the model function with the
indenter force–displacement relation generated on the basis of (3.274), fi

E and hi

are the measured force and displacement data of the indenter and the coordinates
of parameter vector p with the material parameters ak, lk and bk. According to
(3.364), using the norm parameter m = 2, the following material parameters are
derived, meeting the requirements deduced in Sects. 3.4 and 3.4.8 such as
restrictions based on classical linear theory, the BAKER-ERICKSEN inequalities and
polyconvexity, Tables 4.2 and 4.3 (correlation between mi and bi see (3.275)).

In the parameter sets listed above, stable (nominal) strain ranges according to
the DRUCKER stability criterion for the deformation modes of uniaxial compression
and uniaxial tension as well as simple shear are shown:

HR-Foam % VE-Foam %

Uniaxial compression Stable for all strains Stable for all strains
Uniaxial tension \340 \180
Simple shear \340 \170

4.2.1.4 Experiments II: Viscoelasticity (Creep)

Experimental Set Up: To mechanically characterize the time domain viscoelas-
ticity of the foam materials HR and VE (see ‘‘Employed Elastomeric Materials’’ in
Sect. 4.2.1.2, Table 4.1), the following deformation modes at constant climatic
conditions (20�C; 50% humidity) were performed under constant indenter weights
and gravity loading:

1. plate compression creep tests with a plate mass of 17.0 kg
2. hemispherical punch creep tests (punch: Ø48 mm, indenter mass: HR-foam:

27.0 kg, VE-foam: 3.3 kg

Test (1) encorporated foam specimen loading with a rigid plane plate with
variable weight. Plate displacement over time was recorded. Test (2) was primarily
used to verify the derived parameters under a multiaxial strain state, cf. Fig. 4.14.
In case of deviation from the experimental results of the hemispherical

Table 4.3 Long-term
material parameters of
VE-foam material

VE-Foam

j lj[MPa] aj[-] mj[-]

1 5.280146E - 03 2.208547E ? 01 1.587915E - 04
2 1.042675E - 03 2.669817E ? 01 2.855843E - 03
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compression test, multi-objective optimization was performed, taking both creep
tests into account (see Sect. 3.4.2).

Creep-Data: Creep testing was chosen along with stress relaxation tests since
the body support material was loaded with a constant body weight, due to gravity,
during body-support interaction (cf. outlines regarding creep behaviour in Sect.
3.2.2.2).

In the parameter optimization process, material data was fitted using a Prony
series expansion, see (3.330) and (3.332). Since the accuracy of this approach is
sensitive to the number of decades of time data (the information in the first second
of recording is as valuable as the information from 1 to 10 s), emphasis was laid on
proper data collection early in the experiments. Possible non-linear viscoelastic
effects of the examined foam materials were handled by capturing the time-
dependent foam material behavior in the operating range, corresponding to the
load case of body weight buttock loading on a soft foam device. Specifically,
dimensions of the test specimen were chosen, such that indenter contact stress
approximately corresponded to the stress to be expected in a buttock-support
interaction simulation. Sample height and contact area, as well as indenter weight,
were chosen accordingly.

Within the first minute indenter displacement values were recorded with a
sample rate of 50 Hz. During the remaining experimental creep time of 10,800 s
the sample rate was 20 Hz.

Fig. 4.15 Shaded contour plots of direct stress of a the plate creep test model at time 10,800 s,
b and c the indenter creep test model with a cylindrical punch (section cut view) at time 10,800 s
(b HR-foam model and c VE-foam model); arrows indicate loading direction

Fig. 4.14 a Loading device for creep characterization of elastomeric foams, b plate compression
test
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In Figs. 4.16 and 4.17 the displacement–time data (creep curves) and the cor-
responding simulation data based on plate and indenter creep test of foam mate-
rials HR and VE are depicted (cross markers). Due to the particular choice of
indenter masses in conjunction with the sample heights of the HR-foam material
the displacement–time outputs in Fig. 4.16 of both tests were similar.

4.2.1.5 Material Identification II: Viscoelasticity (Creep)

Constitutive Equation: Based on the long-term parameter optimization results of
the foam materials HR and VE of Sect. 4.2.1.3 as well as the results of creep
testing in the previous section, appropriate material parameters regarding foam
viscoelastic behaviour are characterized. Under the assumption of linear visco-
elasticity at finite strain, the continuum mechanical description is performed using
the material model proposed by (Simo 1987) and implemented in ABAQUS

�
FE-

solver. The resulting KIRCHHOFF stress tensor s based on (3.334) reads (cf. outlines
in Sect. 3.2, 3.2.6.5)

s tð Þ ¼ sH tð Þ þ sD tð Þ ¼ sH
0 tð Þ þ sD

0 tð Þ �
Z

t

t0¼0

X

NK

i¼1

ki

sK
i

e
� t0

sK
i sH

0 t � t0ð Þdt0�

� p
ð4Þ
� �

Z

t

t0¼0

X

NG

i¼1

gi

sG
i

e
� t0

sG
i F�1

t t � t0ð Þ � sD
0 t � t0ð Þ � F�T

t t � t0ð Þdt0

2

4

3

5

where the relative moduli ki and gi as well as the relaxation times sK
i and sG

i are to
be identified.

Identification of the Prony-Series Parameters: Due to the fact that spatial
stress and strain states are to be expected during experimental testing, and similar
to the experiments regarding material equilibrium elasticity (cf. outlines in Sect.
4.2.1.3), characterization of Prony series parameters ki, gi, sK

i and sG
i in (3.334) is

performed employing the algorithm based on iFEM, as described in Sect. 3.4. The
model function fi

M(hi, p) of the quality functional (3.364) corresponds to the
specialized displacement–time relation, which results from the inverted material
model given in (3.334) (this is automatically done by means of the FE-solver when
solving the boundary value problem). The fi

E are the measured displacements, the
hi is the measured time and the coordinates of the vector p relate to the material
parameters ki, gi, sK

i and sG
i .

The creep test scenarios regarding Prony-series material parameter optimization
of ki, gi, sK

i and sG
i were FE-modeled and iteratively simulated during the

optimization process. Corresponding FE-models of the plate creep test and the
indenter creep test are depicted in Figs. 4.15a, b and c. In both deformation modes,
foam material was modelled using fully integrated 8-node first-order incompatible
mode continuum elements with an average element side length of 8 mm. All three
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degrees of freedom of bottom foam sample nodes were constrained for the HR-
foam model. Modelling of contact interaction between bottom foam sample and
bottom support surface in the VE-foam model was shown to be crucial in matching
experimental data, since the sample outer edges lost ground contact during load-
ing. All indenters were modelled as analytical rigid bodies.

Comparison of creep test data with simulation output for HR-foam material,
Fig. 4.16, and VE-foam material, Fig. 4.17, is shown based on optimized long-
term material parameters provided in Tables 4.2 and 4.3 as well as optimized
viscoelastic Prony series parameters, as provided in Table 4.4. For visualization
purposes, the plotted time range is reduced from 10,800 to 3,600 s.

Optimized viscoelastic Prony-series parameters of HR-foam material and VE-
foam material are as follows.

Verification: To verify the derived long-term moduli ak, lk and mk

(cf. Table 4.2 and 4.3) as well as derived Prony series parameters ki, gi, sK
i and sG

i

(cf. Table 4.4) under complex loading conditions other than indenter loading, a
test scenario was conducted intended to approximately correspond to physical
buttock-support interaction. A physical buttocks model based on plaster casts of
the human buttocks was built, Fig. 4.18. The cast negative was covered with thin
fibre glass sheets and covered with resin. After hardening, the surfaces were fin-
ished. The buttocks model was mounted into a test rig and linearly guided to assure
vertical movement only. Additional masses were attached to the model to adjust

Fig. 4.16 Comparison of experimental HR-foam material data with simulation output of a the
plate creep compression test and b the indenter creep test
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total model mass to 25 kg. The model was placed on foam samples
500 9 500 9 75 mm, Fig. 4.18c.

In the modelling process, precise surface CAD-data of the physical buttocks
model was digitally collected using a three-dimensional full-body scanner
(VITUS

smartXXL
�
; VITRONIC; Germany). Surface data was meshed with triangular 3-

Fig. 4.17 Comparison of experimental VE-foam material data with simulation output of a the
plate creep compression test and b the indenter creep test

Table 4.4 Viscoelastic material parameters of (a) HR-foam material and (b) VE-foam material

(a) HR-Foam (b) VE-Foam

i gi[-] si[s] gi[-] si[s]

1 7.24667975E - 01 3.25926311E - 02 8.75210059E - 011 3.04977955E - 02
2 1.84600447E - 01 3.30006882E - 02 1.65049815E - 02 3.31426625E - 02
3 4.47104857E - 04 3.54360213E - 02 2.96531140E - 03 3.31507822E - 02
4 6.45458733E - 03 1.14841058E ? 01 6.74259944E - 03 3.31629693E - 02
5 2.32294746E - 03 2.53829859E ? 01 5.39636238E - 05 3.45422514E - 02
6 6.10180871E - 03 3.33137424E ? 02 6.09891345E - 04 4.17743063E - 02
7 2.70874935E - 05 8.67376118E ? 02 5.33865571E - 03 6.48041003E ? 00
8 1.14057742E - 02 1.51608158E ? 04 2.76623996E - 05 6.39260452E ? 01
9 1.48487191E - 03 1.04431232E ? 05 1.17596521E - 02 9.82654973E ? 01
10 6.24421232E - 03 1.28345490E ? 05 1.69491839E - 03 8.27818532E ? 02
11 – – 5.54804608E - 03 1.40340976E ? 04
12 – – 8.31304258E - 06 1.61072112E ? 04
13 – – 4.07932404E - 07 1.97109187E ? 04
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node shell elements, and rigid body characteristics were assigned. All degrees of
freedom except the loading direction were constrained. In addition, point mass was
added to meet the experimental model weight.

Creep testing was performed as described in Sect. 4.2.1.4 with HR-foam
material and VE-foam material, and buttock vertical displacement was measured
over 3 h. Comparison of experimental displacement–time recording and simula-
tion output are depicted in Fig. 4.19 for HR-foam material and Fig. 4.20 for VE-
foam material.

A Critical Review: The exclusive use of long-term material data in interaction
simulation, without considering time-dependence, underestimates the material
response in most cases. As the Figs. 4.12 and 4.13 show, exclusive use of the long-
term material response is not justified if the material very slowly, over hours or
even days, reaches steady state. Without information on material time-dependence,

Fig. 4.18 Physical buttocks model: a CAD-surface data, b FE-Mesh, c deformed VE-foam
model and d rigid buttock model on VE-foam in section cut view

Fig. 4.19 Comparison of experimental HR-foam material data with simulation output: a zoomed
time range: 0–30 s and b time range: 0–10,000 s
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the use of experimental data points in the overstress branches of the test curve
seem more appropriate for material representation. These may then serve as the
basis for the parameter optimization process.

4.2.2 Polymeric Soft Foams for Seating Systems

In the following, the presented approach in Sect. 4.2.1 for material characterization
is employed to identify materials (here: foam and fibre composite materials) used
in automotive and airplane seating (cf. Sects. 4.2.2.1 and 4.2.2.2). Again, all
presented tests have been modelled via FEM to perform material characterization
(cf. outlines in regard to Fig. 4.11).

4.2.2.1 Car Seat Materials

In Fig. 4.21a, b and c the experimental findings of the plate and the indenter
compression test and the plate creep test, Fig. 4.21d of the car seat materials
depicted in Fig. 6.35a are shown in comparison to simulated output based on the
material parameters of equilibrium elasticity according to (3.274). In this regard,

Fig. 4.20 Comparison of experimental VE-foam material data with simulation output: a zoomed
time range: 0–30 s and b time range: 0–10,000 s
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Fig. 4.22 Force-displacement data of a the plate compression test and b indenter compression
test of the foam core material (force–displacement scales have been removed due to
confidentiality)

Fig. 4.21 Force-displacement data of the plate compression test (top row) and the hemispherical
punch test (mid row) and displacement–time data from plate creep testing (bottom) of three
polymeric soft foam materials (test: continuous line, simulated model output: dashed line): a face
side material, b beaded rim back side and c beaded rim seat and d plate creep tests of beaded rim
seat material (force–displacement and force–time scales have been removed due to
confidentiality)
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‘‘face side’’ refers to the main seat cushion for buttock and back support and
‘‘beaded rim’’ is the side part of the seat.

All tested foam materials exhibit the typical force characteristics (three distinct
regions) apparent in plate compression testing (cf. outlines in regard to Fig. 4.4).
Note that the curve characteristics are qualitatively similar, but do differ distinc-
tively in their force values, indicating different material stiffness.

4.2.2.2 Airplane Seat Materials

Material identification of different airplane seat materials follows.
Seat System with Foam Core and Leather Covering: this seat system con-

sists of a foam core with fire blocker coating and a leather cover. Figure 4.22
illustrates the experimental plate compression and hemispherical punch com-
pression results together with the simulation fit based on material parameters of

Fig. 4.24 a FE-simulation model of the indenter compression test and b force–displacement data
with simulated fit based on the equilibrium elasticity material parameters of foam, fire-blocker
and leather cover of an airplane seat

Fig. 4.23 a Scenario of the indenter compression test in a climatic chamber: foam core with
leather cover material of an airplane seat and b force–displacement data of the compound
material compared to the plain foam core material (force–displacement scales have been removed
due to confidentiality)
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equilibrium elasticity according to (3.274) obtained through multi-criteria
optimization.

Force–displacement data obtained through hemispherical punch compression
testing of the foam core material, together with the cover material, are compared to
the data of the pure foam material, Fig. 4.23. Here, an increase in stiffness of the
material compound system can be observed, compared to the pure foam material.

Figure 4.24a depicts the corresponding FE-model of the indenter compression
test and the simulated force–displacement response of the equilibrium elasticity,
Fig. 4.24b. The parameter optimization of the leather cover is based (at known
parameters of the foam material) on the MOONEY-RIVLIN model (3.201) with
f(J) according to (3.202)4 for b = 0, observing optimization constrained in the
form of the force–displacement data of the compound material.

Seat System with Surface Fabric Lining and Leather Cover: This seat
system is composed of a fabric lining sheet with orthogonal fibre directions,
attached to an aluminum rim and a leather cover. In Fig. 4.25a the lining with its
fibre materials is depicted and Fig. 4.25b shows a tensile test with loading
direction along one fibre direction. The evaluated force–displacement data from
tensile testing in both fibre directions, Fig. 4.25b, were used in a first

Fig. 4.25 a Seat fabric material, b tensile test of a fabric sample in one fibre direction and
c hemispherical punch test of the leather cover material

Fig. 4.26 Tensile test force–displacement data of the fabric seat lining in a fibre direction 1 and
b fibre direction 2 and c indenter test of the fabric lining attached to the rim with pre-tension and
leather cover material
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approximation employing an orthotropic HOOKE-model to characterize the lining
material (note the nearly linear corridor of the equilibrium elasticity) for plane
stress according to (3.294), Figs. 4.26a and 4.26b. The Poisson ratio m12 was
determined via separate tensile tests with a reflected-light microscope.

Figure 4.26c depicts the resulting force–displacement data from hemispherical
punch testing of the cover material (Fig. 4.25c) compared to the simulation fit data
based on the material model for equilibrium elasticity (3.274).

For verification of the FE-seat model with the plain fabric material under pre-
tension attached to the rim without leather cover material and based on the pre-
viously derived material parameters two loading scenarios were conducted.
Hemispherical punch tests were performed, Fig. 4.27a, at two different positions as
illustrated in Figs. 4.27b and c and indenter force and displacement were mea-
sured. In Fig. 4.28 the force–displacement test data compared with the simulation
results are depicted. Both indenter positions show sufficient agreement since the
simulation data lie within the corridor of equilibrium elasticity. As can be seen in
Fig. 4.28a, b, hysteresis effects are small compared to those shown in Figs. 4.26a,

Fig. 4.27 a Test scenario of the indenter compression test employing the pre-tensioned fabric
material with rim and without leather cover, b and c simulated indenter positions

Fig. 4.28 Force-displacement data of indenter compression test employing the airplane seat with
pre-tensioned fabric lining and leather cover for a indenter position 1 and b indenter position 2
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b. This effect may possibly be associated with the pre-tension of the fabric material
being stretched to the rim. The material thus has partially relaxed.

To verify the FE-seat model with the plain fabric material under pre-tension
attached to the rim with leather cover material, indenter testing was conducted
again for a single position, cf. Fig. 4.29a. Figure 4.29b depicts the corresponding
FE-model at the maximum indenter position and Fig. 4.29c shows the force–
displacement data of the test, compared with the simulation output. A sufficient fit
was achieved. Hysteresis effects shown in Fig. 4.29c were larger compared to
those depicted in Fig. 4.28a, b. This effect may possibly be associated with the
combination of fabric and cover material, whereby the cover material probably
contributes to the hysteresis characteristic.

Fig. 4.29 a Test scenario of the indenter compression test of an airplane seat with fabric lining and
leather cover, b corresponding FE-modell and c verification of the force–displacement test data
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Chapter 5
Human Body Models: BOSS-Models

Abstract The generating process of the human body BOSS-Models and their in
vivo material properties are presented. After introducing the basic morphological,
physiological, biological and mechanical properties of human soft tissue
(Sect. 5.1), the mechanical characterization of human soft tissue is discussed in
detail using the example of human gluteal tissue. Based on experimental in vivo
data the tissue non-linear hyperelastic and linear-viscoelastic material behaviour at
finite strain (relaxation and creep) is described based on continuum mechanical
material equations, (Sect. 5.2). Section 5.3 presents various finite element
BOSS-Models generated on the basis of MR-scanning images and 3D-image
reconstruction. They simulate body loading in the seated and recumbent posture,
as well as for walking and running and for automotive crash applications.
Submodels of individual body regions such as head, spine, knee, leg and foot are
introduced.

5.1 Human Tissues

Understanding tissue composition provides a basis for making appropriate
assumptions in the continuum mechanical modelling process and to interpret
simulation results. The morphologic, biologic and mechanic functionality of some
human tissue types is described. Focus is laid upon the biomechanical and
structure mechanical description of interaction between the human body or single
body regions and extra-corporal body supporting devices, based on continuum
mechanical models. Other tissue properties such as physiology, biology and
mechanical behaviour, particularly of human tissue, are reviewed in the literature
e.g. (Fung 1993) and (Barbucci 2002).

G. Silber and C. Then, Preventive Biomechanics,
DOI: 10.1007/978-3-642-29003-9_5, � Springer-Verlag Berlin Heidelberg 2013
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5.1.1 Morphology

Generally, (human) tissue is composed of cell compounds which serve common
functions and tasks in the body. Tissue assemblies organize to organs supplied by
nerves and vessels in a framework of connective tissue (Thews 1999). From a
morphologic and functional point of view, four main tissue groups are distin-
guished: epithelial, connective, muscle and nervous tissue. Epithelial tissue covers
the inner and outer surfaces of the body and carries out secretory (glandular
epithelium), resorption (resorptive-epithelium) or sensory (sensory epithelium)
functions, cf. Fig. 5.1a and b. Connective tissue can be differentiated into
mesenchyme and gelatinous tissue, reticular tissue, cf. Fig. 5.1c and d, adipose
tissue, cf. Fig. 5.2a, and fibrous tissue. Supporting connective tissue can be further
subdivided into chorda and cartilage-tissue, bone tissue, cf. Fig. 5.3, tooth cement

Fig. 5.1 Histology of epithelial tissue of a underarm skin, and b stomach, c reticular connective
tissue, and d gelatinous tissue (Jastrow 2009)

Fig. 5.2 Histology of a fat tissue, b smooth musculature, c and d striated musculature (Jastrow
2009)

Fig. 5.3 Supporting tissue a elastic cartilage (Tierärztliche Hochschule Hannover 2009), b and
c bone (Kurth 2009)
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and dentin. Muscle tissue can be subdivided in smooth and striated muscles, cf.
Fig. 5.2b–d. Nervous tissue is composed of nerve cells and neuroglia (ectodermal
connective tissue) and is found in the central nervous system (brain and spinal
cord), as well as in the peripheral nervous system.

This differentiation circumscribes the anatomic and physiologic complexity of
human tissue. Figure 5.1, 5.2, and 5.3a show histological slices of different tissues
and their structures (meso-, micro-, ultra-structures). Distinct material inhomo-
geneities from a continuum mechanical standpoint are reflected by different
scaling levels and accompanying material anisotropies. Figure 5.4 shows (micro-)
structural differences between skin, fat and skeletal musculature.

The mechanical behaviour of soft biological tissue depends on the fibrillar
components of the extracellular matrix, primarily elastin and collagen, as well as
nonfibrillar components in which the cells and fibres are embedded. The
mechanical properties of elastin and collagen determine the overall mechanical
tissue behaviour and will be discussed in more detail.

5.1.1.1 Collagen

According to Wikipedia (2009), collagen, derived from the Greek kolla gen
(producing glue) was used in ancient times as wood glue. Collagen is a structural
protein and is a basic constituent of the extracellular matrix of connective tissue in
animal and human bodies. 30 % of the total weight of all proteins is collagen,
making it the most widespread protein. Collagen constitutes a major part of bones,
teeth, cartilage, ligaments, tendons and skin. Its fibres have an extreme tensile
strength at almost zero strain and exhibit diameters in the range of 1–10 lm
(cf. Fig. 5.7). Collagen thus represents the main load-carrying element.

Collagen is composed of helical peptide chains which untypically exhibit a left-
orientated helix structure (cf. Figs. 5.5a, d and 5.7b). Three of these helices,

Fig. 5.4 Stained sections of a human skin, b white adipose tissue with adipose cells and
c skeletal muscle with muscle fibres (white), adopted from (University of Central Florida 2009)
and (University of Western Australia 2009)
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interconnected by hydrogen bonds, are entangled, constituting a right-orientated
super-helix, building a 3D network of fibrils. The winding (similar to rope fibres) is
responsible for the collagen fibre’s tensile strength, which can carry loads ten
thousand-fold its own weight. Under loading, the threadlike windings of the fibrils
stretch, reducing their diameter. In this initial phase, collagen is relatively
stretchable. While the diameter of the winded polypeptide chains decreases,
stiffness and resistance against further deformation increases (Gordon 1989).

Fig. 5.5 Collagen and elastin: a Collagen triple helix (Israel Institute of Technology 2009),
b collagen is a triple helix formed by three extended protein chains wrapping around each another
(bottom). Many rodlike collagen molecules are cross-linked together in the extracellular space to
form unextendable collagen fibrils (top) that have the tensile strength of steel. The striping on the
collagen fibril is caused by the regular repeating arrangement of the collagen molecules within
the fibril, c elastin polypeptide chains are cross-linked together to form rubberlike, elastic fibers.
Each elastin molecule uncoils into a more extended conformation when the fiber is stretched and
recoils spontaneously, as soon as the stretching force is relaxed (Alberts et al. 2009)

Fig. 5.6 Elastin a in a muscular artery (elastin stain) (Israel Institute of Technology 2009), b in
alveoli (orcein stain) (Israel Institute of Technology 2009), c Bundles of collagen fibres wrapped
with elastin fibres from (Schäffler et al. 1995)
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A distinction is made between collagen of type I to type III where type II
predominantly exists in cartilage, and type I and III in ligaments, tendons and skin.

5.1.1.2 Elastin

Elastin (formerly: tropoelastin) consits of interlinked elastin-units forming a
network of very fine protein fibres, cf. Figs. 5.5, 5.6a, b and 5.7.

Elastin represents the major protein of elastic fibres in almost all vertebrate
connective tissue. It belongs to the group of structural proteins since it is
responsible for shape, resilience and elasticity. In contrast to collagen, elastin
protein fibres can stretch several times their normal length under loading. Elastin is
predominantly found in elastic tissues such as arterial walls, lungs, intestines and
skin. It is secreted by cells in a soluble form and interconnected by the enzyme
lysyloxidase (LOX) and the amino acid lysine.

Mechanically, elastin fibres can be characterized by elastic spring behaviour
and they fully recoil to their original shape when unloaded. Collagen fibres, in
contrast, are characterized by extreme tensile strength, thus exhibiting viscous and
damping characteristics. Under tension loading, however, collagen fibres behave
almost linearly elastic, with little energy dissipation.

5.1.1.3 Ground Substance

Ground Substance is an unstructured substance and is found in connective tissue.
Its chemical consistency depends on the chemical composition and can be liquid to
gel-like. Intercellular components such as collagen and elastin are embedded in the
ground substance. The ground substance consists largely of water (60 to [90 %).

Fig. 5.7 a Electrospun elastin (bovine ligamentum nuchae) showing 1.1 ± 0 7 lm fibre
diameter (magnification 4,300X with the inserted scale bar at 1 micron), b (top) Electrospun
type I collagen (calf skin) showing 100 ± 40 nm fibre diameter (magnification 8,000X with the
inserted scale bar at 1 micron), (bottom). Electrospun type I collagen (calf skin) showing
4.62 ± 2.09 lm fibre diameter (magnification 500X with the inserted scale bar at 10 microns),
(Boland et al. 2004)
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Dissolved within the water are proteins, ions, enzymes, metabolites and polysac-
charides. When mechanically loaded, fluid is expelled from the tissue, leading to
an unbalanced osmotic pressure.

5.1.1.4 Tissue Types

Two main tissue groups may be distinguished:
• Soft Tissue: entire body tissues and organs, which are not comprised of bone,

i.e. adipose tissue, muscles, fibrous tissue, cartilage, blood
vessels, ligaments, tendons and skin

• Hard tissue: mainly comprised of bone material

Mechanical description and modelling of each tissue type with its intercellular
composites, collagen and elastin included, is challenging. The goal is to generate
adequate human body models from an engineering-scientific point of view, with
realistic material characteristics. Soft tissue regions are used to make sufficient
predictions about the complex three-dimensional interaction of the tissue with
arbitrary body supporting devices on a microscopic scale. A description of the
complete anatomy at specific body sites is necessary. However, a differentiation of
single tissue types is only sought insofar as may be required for particular prob-
lems. Hence, epithelial tissue is not distinguished from connective tissue and
connective tissue is not differentiated into any further single groups. The tissue
groups are rather considered as a skin-fat compound. Furthermore, supporting
tissue is not further distinguished, and bone tissue, where possible, is assumed to
be rigid. In this model the following three tissue types are differentiated:

• Skin-fat tissue compound
• Muscle tissue
• Bone

Likewise, the substructures of these three biological materials shown in
Figs. 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, and 5.7 are ignored and they are assumed to be
homogenous, and in the sense of classical continuum mechanics, thought of as
uniformly ‘‘smeared’’ over a volume element.

5.1.2 Physiology

Skin, or cutis, is a layered structure organized into three layers, the epidermis,
0.1–1.5 mm thick, the underlying dermis, 2–5 mm thick, and the subcutis beneath
the dermis, 0.4–4 mm thick. The epidermis provides a barrier to damage. In
addition, it regulates body heat, controls evaporation and receives sensory stimuli.
The dermis provides nourishment and mechanical support to the epidermis. The
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dermis is mainly composed of extracellular matrix components, collagen and
elastin embedded in ground substance. It is assumed that the dermis is responsible
for most of the skin’s mechanical properties. These properties, however, vary with
body region, age, sex, and physical condition. The subcutis comprises loose
connective tissue and fat and connects the dermis to underlying tissue, such as
muscle or organs. The subcutis contains blood vessels, lymphatics, nerve, and fat
cells (adipocytes).

Fat cells provide energy, thermoregulation, insulation and mechanical cush-
ioning. The functional purpose of adipose tissue is reviewed by (Klein et al. 2007)
in a report on subcutaneous fat. The mechanical properties of porcine subcuta-
neous (white) adipose tissue have recently been investigated under low and high
strain. Distinct time-dependent changes in viscosity at specific strain have been
demonstrated in adipose tissue, (Geerligs et al. 2008) and (Geerligs et al. 2010).
Adipose tissue samples in these studies were from the porcine middle layer, which
is reported to be comparable to the deep subcutaneous layer in the abdominal
region of humans.

In addition, to provide qualitative microscopic insight into pathologic changes
of the papillary layer of the human dermis adjacent to a pressure sore at the
sacrum, tissue samples taken post mortem from a 87 year old subject are shown in
Fig. 5.8. The sampling locations in Fig. 5.8 provide (a) healthy tissue as well as
tissue taken from regions at the pressure sore boundary (b), (c) and (d) within a
stage-II pressure sore, (Arao et al. 1998).

5.1.3 Biological and Mechanical Properties

From a mechanobiological point of view, more or less large cell conglomerates of
human soft tissue, especially connective and muscle tissue, consist of a filling
which exhibits viscoelastic properties. The filling is enclosed by a membrane of
entangled protein fibres, permitting water exchange (enclosed-filling-problem),
(Otto 1985) and (Benderoth 1984).

The degree of filling is of central importance for the deformation behaviour due
to an outer load. Only the living organism guaranties a stationary filling state

Fig. 5.8 Scanning electron microscope photographs of the papillary layer of the human dermis
a healthy, b–c partially damaged, and d severely damaged. Magnification: a, b, c: x700, d: x200
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(homeostasis) based on the interaction of osmotically active proteins in the blood,
the hydrostatic pressure due to the pumping capacity of the heart and the expulsion
of water by the kidneys.

Numerous ex vivo and in vitro measurements have been conducted by (Fung
1993) to evaluate the mechanical properties of human tissue. However, extracting
tissue samples from their original surroundings the (mechanical) properties change
dramatically due to change of pretension, pH-value and/or concentration of
electrolytes and water (Fung 1993).

Figure 5.9 qualitatively illustrates the different force–displacement relations
obtained from a living (intact) and an under-filled (not intact) organism. The not
intact organism is characterized by a decidedly slower increase in the origin
(horizontal tangent). An adequate description of the mechanical properties of
human tissue and their mechanical characterization for a continuum mechanical
material model requires measurements involving the living organism in vivo. This
is indispensable.

Figure 5.10a and b depict characteristic stress–strain data based on ex vivo
samples of elastin, collagen and passive and active muscle, as well as stress-stretch
data of the skin. The curves show that such materials generally exhibit strongly
non-linear material behaviour with an initial low load increase and an approxi-
mately linear initial region and an exponential load increase at higher strain.
In addition, the qualitative curve characteristics correspond to the characteristics
expected from a not-intact organism (Fig. 5.9a).

Fig. 5.9 Illustration of the enclosed-filling-problem: a force response of an under-filled
(non-intact) system, and b force response of an intact system (Benderoth 1984)
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Furthermore, all human tissues principally exhibit more or less viscoelastic
(stress) relaxation and/or creep behaviour. The load–displacement diagram thus
shows hysteresis, as can be seen in the example of gluteal skin-fat-muscle
compound (Fig. 5.15d) (also cf. outlines in Sect. 3.2.2.2). Table 5.1 lists some
important material parameters of collagen and elastin, (Park 1984), (Fung 1993)
and (Abrahams 1967).

5.2 Human Soft Tissue Compound in the Buttock Region

5.2.1 Introduction

The mechanical loading of soft tissue compounds (skin-fat-muscle), including the
gluteus maximus muscle, is of primary interest (cf. Fig. 5.11) for numerical
simulation of mechanical interaction between the human body in the seated or
recumbent position and elastic/viscoelastic body support devices. Based on
appropriate in vivo experiments, the mechanical characterization of these tissues is
necessary. The challenge is to separately characterize each tissue component,
primarily skin/fat and muscle to establish individual material parameter sets.

The human sacral region is highly prone to pressure sores, more than 50 %
forming at the sacrum and ischium (Yeoman and Hardy 1954) (Dansereau and
Conway 1964). This region has been subject to several computational studies

Table 5.1 Approximate mechanical properties of elastin and collagen fibers

Fibres Modulus of elasticity (MPa) Tensile strength (MPa) Ultimate elongation (%)

Elastin 0.6 1 100
Collagen 1,000 50–100 10

Fig. 5.10 a stress–strain behaviour of collagen, elastin, passive and active muscle (Gleason et al.
2004), and b skin from ex vivo tensile testing (Wainwright et al. 1982)
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investigating the stress–strain state of gluteal soft tissue under loading. Material
parameters employed for human soft tissue within these computational investi-
gations have been derived in different manners. Specifically, buttock indentation
tests have been performed by (Todd and Thacker 1994) where the soft tissue
compound was assumed to be linearly elastic (E = 15.2 kPa, m = 0.49). (Oomens
et al. 2001) used rat data to represent human muscle tissue (l1 = 12 kPa, a1 = 30)
and skin parameters (l1 = 16 kPa, a1 = 10) derived from pig experiments using
the Ogden form for incompressible materials according to (3.203). Fat parameters
were assumed (l1 = 20 kPa, a1 = 5). In an additional study by (Oomens et al.
2003), again, animal data were employed as the basis for the investigation.

Using a neo-HOOKEAN material model, (Sun et al. 2005) made assumptions
about the material properties of skin (E = 0.85 MPa), fat (E = 0.01 MPa) and
muscle (E = 0.126 MPa) using a Poisson’s ratio of m = 0.485. Literature based
parameters were used in a recent study by (Lim et al. 2006) using the MOONEY-
RIVLIN material model to describe human soft tissue behaviour. (Linder-Ganz and
Gefen 2007) used a neo-HOOKEAN material model employing material data of
porcine gluteal muscle as well as skin/fat data from indentation testing. The
instantaneous material constants were downsized to obtain the long-term material
response.

The 3D anatomical structure of the human buttock used in these investigations
was mostly based on reconstructed MRI-data, e.g. in (Sun et al. 2005) and
(Lim 2006), which provided realistic anatomical information. More abstract
models of the buttock, considering a distinct buttock section, were used in (Todd
and Thacker 1994) and (Oomens 2003) aiming to establish the stress–strain state in
tissue adjacent to prominent bone structures. Tissue layer thickness information, as
well as abstract anatomical structures, were derived from MR-images.

Besides geometric modelling approaches, the investigations previously men-
tioned were mainly based on tissue parameters derived from ex vivo animal

Fig. 5.11 Schematic
representation of the
anatomic structure of the
human gluteal region
(transversal cut) (Sobotta
2007)
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experiments. This is due to a paucity of information on human in vivo material
parameters characterizing human long-term gluteal fat and muscle tissue proper-
ties. Therefore, no calibration with human tissue properties has been performed to
judge the adequacy of the employed animal data.

A more or less distinct anisotropic and/or viscoelastic material behaviour can
principally be assumed for all tissues. Determining tissue anisotropy most likely
constitutes the major problem involving the living human organism (aside from
prerequisite ethical approval) since experiments require a different approach than
handling ex vivo tissue samples in the lab. Simplified material experiments must
be performed on humans which, at minimum, provide information on the
qualitative material behaviour of the body site under investigation.

The isotropic assumption is admissible with respect to the fat-muscle tissue
compound in the human gluteal region. This is particularly true for adipose tissue
as the substructure on a macroscopic scale in Fig. 5.2a indicates. In a first
approximation, the muscle groups involved in the gluteal region exhibit
predominantly passive behaviour during static sitting or laying down. The loading
during the experiments in this approximation was conducted in a cross fibre
direction, i.e. orthogonal to the fibre direction.

To evaluate the viscoelastic material behaviour of human soft tissues, an
established procedure is described (cf. Sects. 5.2.4 and 5.2.5), similar to the
experimental procedure employed in soft foam material characterization
(cf. Sect. 4.2.1). Furthermore, an approach is presented to separate the mechanical
behaviour of both ‘‘sub-systems’’, i.e. fat and muscle. Both procedures rely on the
use of (medical) imaging procedures and are quite rigorous (volunteers are
required to remain several hours in an almost unchanged body position).
Figure 5.12 illustrates the schematic assembly of the test design for mechanical
tissue property evaluation (force–displacement-data) together with some physio-
logical data (O2-values and micro-perfusion) of the gluteal tissue.

Fig. 5.12 Schematic representation of the test design for evaluation of mechanical and
physiological tissue data in the gluteal region
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5.2.2 In Vivo Experiments I: Elasticity

5.2.2.1 Force–Displacement Data

Experimental Set-Up: To investigate the material behaviour of the skin-fat-
muscle compound in the gluteal region, an MR-compatible loading device was
developed, Fig. 5.13a, by which mechanical properties of the human body were
gathered in vivo, Fig. 5.13b. The apparatus ensured defined and reproducible
loading and unloading and was compatible with the deployed MRI-device in terms
of material (PVC, AL) and dimensions (H 9 W 9 D: 350 9 540 9 300 mm).
Loading was applied via a cylindrically shaped indenter head (Ø25 mm) with a
head corner radius of 1 mm, equipped with a 200 N force transducer (1 mV/
V 9 3 %). The indenter displacement was measured via an incremental TTL-
rotary encoder (1,024 ppr) situated in the upper part of the apparatus. To localise
the position of the indentation axis in the MRI-environment for reproducibility in
the FE-modelling process, tablets with a high fraction of sodium hydrate were
incorporated into the indenter head, conferring a clearly detectable signal. To

Fig. 5.13 a MR-compatible loading device (schematic), b buttock loaded with a cylindrical
indenter head, c indenters with microperfusion sensor, d and e loading scenario at the buttocks
(schematic)
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ensure stability during measurement, the ground frame of the apparatus was fixed
to the MRI table.

To additionally measure physiological data such as oxygen saturation, blood
flow, erythrocyte velocity, percentile hemoglobin values (in 2 and 8 mm tissue
depth), an indenter with an incorporated microperfusion-sensor was designed,
Fig. 5.13c.

Location of the Test Point: The buttock was chosen as the indentation location
since the pelvic bone offers a broadly based support which can be assumed to
capture the indenter loading. In addition the pelvic bone is stiff (undeformable)
compared to the buttock skin/fat and muscle tissue. The pelvic bone provides
defined boundary conditions to guarantee reproducibility in the computational
model. The gluteal region exhibited sufficient skin/fat and muscle tissue to provide
a clearly distinguishable borderline between (deformed) fat and muscle tissue and
bone structure in the MR-images. The test person’s hip region was fixed using a
plaster mold fitting tightly into the base frame of the loading apparatus and
embedding the pelvis so that it could not escape the outer loading. To minimize
shear effects on the muscle-bone interface as well as on the fat-muscle interface,
the indenter load direction was set almost orthogonally to the pelvic bone surface,
cf. Fig. 5.14a. This was verified by MRI pre-recordings. The location of inden-
tation relative to the pelvic bone was primarily chosen with respect to the pelvis
bone acting as a counter bearing to completely carry the compressive indenter
load, cf. Fig. 5.14b. Thus, the indentation axis was centred relative to the bone
surface, taking into account that the gluteus medius muscle was partially com-
pressed along with the gluteus maximus. The assumption of the pelvic bone being
broad enough to capture the indenter loading can be verified by simulation as
shown in Fig. 5.14c where the region of highest (von Mises) stress is situated on
the bone surface. The simulated tissue deformation in Fig. 5.14c is equivalent to
that in the MR-image, Fig. 5.14a.

Indentation Test with Holding Times: With the objective of separating elastic
from inelastic tissue material properties, a stepwise and cyclic loading and
unloading of the passive gluteal tissue with the subject in a procumbent, relaxed
position was performed, similar to the procedure described in Sect. 4.2.1.2.

Fig. 5.14 Location of the test point: a indenter axis (arrow) orthogonal to the pelvic bone
surface (hatched), b counter bearing function of pelvic bone (arrow indicates force direction),
c FE model in section cut view
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A constant indenter velocity (2 mm/s) was maintained with a total tissue inden-
tation of 44 mm, while indenter force and indentation displacement were recorded,
Fig. 5.15a. To eliminate frictional effects, the indenter was lubricated. After each
deformation step, a holding time of 2 min was maintained where the indenter
displacement was held constant and the tissue responded with a relaxation process,
cf. Fig. 5.15b. The force–displacement values reached after each holding period
are referred to as termination points. The force values of the termination points
almost reached a state of equilibrium, cf. Fig. 5.15b and d. Corresponding ter-
mination points of the loading and unloading paths, cf. Fig. 5.15d, indicate the
range comprising the pure elastic tissue behaviour (after relaxation) and serve as
basic input for identification of long-term parameters. At maximum indenter
displacement tissue unloading was performed, corresponding to the loading pro-
cedure. The displacement increment sizes (0-5-5-10-10-10-4 mm) of the loading
and unloading cycle were chosen to accommodate the total experimental time,
including seven MR-sessions and test apparatus management. The first two
increments were intended to attain higher resolution of the initial curve slope,
providing minor force increase, whereas the magnitude of the last increment was
due to limitation of the load impact on the test person. The maximum indenter

Fig. 5.15 Procedure to evaluate the mechanical properties of gluteal tissue: a displacement–
time-diagram (displacement-driven indenter movement), b force–time-diagram with stepwise
relaxation response, and c in combination with oxygen saturation (blue, light blue) and blood flow
(green, light green) in tissue depth of 2 and 8 mm, and d force–displacement diagram with
termination points
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displacement assured intense ascent of the indentation force, to capture a wide
range of gluteal tissue behaviour.

Figure 5.15c illustrates, in addition to force–time data (red), the corresponding
oxygen saturation and blood flow of the tissue under loading and unloading. This
was accomplished employing a microperfusion sensor, integrated into the indenter
head. Oxygen saturation and blood flow decreased while increasing the tissue load,
at unloading, the process was reversed. Similar to polymer foam materials
(Sect. 4.2.1.2), a relaxation tissue behaviour can be observed with exponentially
increasing and decreasing forces in the force–time diagram. In addition, higher
oxygen saturation and blood flow values were observed at 2 mm tissue depth,
compared to a depth of 8 mm.

5.2.2.2 MRI Scan Data

Transversal MR-images of the unloaded and stepwise loaded tissue in the gluteal
region were performed as depicted in Fig. 5.16, initially in the undeformed
configuration progressing to the last deformation state at (here) Du = 44 mm. The
tablets incorporated into the indenter head are displayed by light spots [1] in the
lower left corner of Fig. 5.16a. With the aid of the pelvic bone (indicated position
[2]), defined muscle tissue displacement and bearing of the indentation forces was
achieved.

The data was acquired using a 1.5 T MAGNETOM SONATA (SIEMENS, Erlangen/
Germany) scanner. The slice thickness was set to 2 mm without a slice gap using a
matrix size of 512 9 512. To initially detect the desired indenter position, a turbo
spin echo sequence with transversal orientation and a repetition time (TR) of
3,000 ms and an echo time (TE) of 93 ms was applied. For the actual scan of the

Fig. 5.16 a–f: transversal MR-images of the buttock region showing tissue deformation from
a 0.0 mm to f 44 mm indenter displacement with tablets incorporated into the indenter head at
position [1] and pelvic bone [2]
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gluteus, a turbo spin echo sequence was employed with a TR of 5,000 ms and a TE
of 98 ms. The process of MR-imaging and indentation testing were combined so
that after each deformation step outside the MRI coil, the table was slid into the
MRI where the buttock was scanned.

5.2.2.3 Separating Procedure (Fat and Muscle)

In the gluteal region, the presented approach assumed a reduction of the complex
tissue compound to a two-component model consisting of a skin/fat layer and a
muscle layer, cf. Figs. 5.11 and 5.16a. Since the in vivo indentation experiments
provided one force–displacement curve and termination points representing the
tissue compound, cf. Fig. 5.18d, the separation of skin/fat and muscle properties

Fig. 5.17 a Geometric separation of fat and muscle tissue, b hypothesis of constant ‘‘sectional
forces’’ (indenter force)

Fig. 5.18 a Separation of force–displacement data of the gluteal fat-muscle-tissue compound of
a 35 year old mal volunteer at steady state into single components, i.e. skin/fat and muscle tissue,
b force–displacement data at steady state elasticity of 4 female (F1–F4) and 4 male (M1–M4)
volunteers
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was based on the hypothesis of unique indenter force transmission through both
tissue layers, cf. Fig. 5.17b. Thus, combining the indentation force with the
displacement information of both tissue layers obtained from the MR-images,
a force–displacement relation for the skin/fat and the muscle layer was postulated.

Due to the indenter head geometry, a deformation was achieved which could be
clearly reconstructed and evaluated from the MR-images. The actual thickness of
the skin/fat layer (li,F) and the muscle layer (li,M) at each deformation step was
measured along the indentation axis, Fig. 5.17a. With respect to the undeformed
initial lengths of each layer (skin/fat: l0,F = 32 mm, muscle: l0,M = 58 mm), the
actual displacement of the skin/fat layer and the muscle layer could be derived.

Assigning the measured indenter force to the corresponding tissue displacement
along the indenter axis, (long-term elasticity) force–displacement data as depicted
in Fig. 5.18a for gluteal skin/fat and muscle tissue were obtained. The muscle
tissue exhibits a stiffer material response (in the sense of a steeper tangent line and
larger modulus of elasticity, at the origin). In contrast to muscle tissue, which
showed a moderate increase in force values at higher compression, fat tissue
tended to block, exhibiting a large force increase with a small displacement change
(from approx. 12 mm displacement in Fig. 5.18a). The blocking phenomena may
be interpreted similarly to that of soft polymeric foam materials. The material
structure: the (incompressible) fat droplets (adipocytes) may be changed in shape
at low force (low bending stiffness of the cell walls) up to the point where the cell
wall structure starts bearing tensile force (strong increase in force). In addition, the
blocking effect can be observed in Fig. 5.16, where at larger indenter displace-
ments, the fat layer thickness along the indenter axis shows almost no change. This
is equivalent to an almost rigid material behaviour (nearly vertical force–
displacement fat curve in Fig. 5.18a). Muscle tissue, in contrast, shows gradual
force progression, with stiffening at comparably larger strain.

5.2.2.4 Biological Variability

Comparing the separated force–displacement curves for human gluteal fat and
muscle, Fig. 5.18a, with the separated force–displacement data from male vol-
unteers (M1–M4) and female volunteers (F1–F4), Fig. 5.18b, shows good quali-
tative agreement. The curves depicted in Fig. 5.18b show that fat from males
exhibits a stiffer initial response (larger modulus of elasticity at the origin)

Table 5.2 Volunteer-data

Acronym M1 M2 M3 M4 F1 F2 F3 F4

Age 35 40 26 34 42 20 31 48
Mass (kg) 81 68 67 75 65 70 55 75
Fat layer (mm) 30.91 24.42 24.95 28.37 42.49 45.86 28.73 44.94
Muscle layer (mm) 57.84 53.82 50.35 61.16 44.31 52.08 42.43 43.94
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compared to fat from females, and in addition, blocks at lower strain. Gender
assignation of muscle force–displacement data is, however, not possible since the
male and female curves partially cross.

From Table 5.2 and Fig. 5.19, it is apparent that with increasing muscle tissue
thickness transversal stiffness increases for male and female transversally loaded
passive muscle tissue. The tissue compound data, Fig. 5.18, permit differentiation
between male and female characteristics, since the compound data from males
show stiffer response compared to that from females. Further differentiation of
these cluster-properties with respect to age, body mass etc. cannot be done based
on the derived force–displacement data.

Critical Review: Based on measured force–displacement data, conclusions
regarding material properties of fat and muscle tissue cannot be made since such
data is not geometry independent. The depicted force–displacement data relies on
the individual anatomical structures of the indentation region and, furthermore, the

Fig. 5.19 Transversal MRI-scans of the human gluteal region in the indentation axis plane of
eight volunteers (4 male: M1–M4/4 female: F1–F4)

Fig. 5.20 Force-displacement data derived from the gluteal region of a four female volunteers
(age: 37–70), and b six male volunteers (age: 24–65)
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indentation force represents an integral measure of all stresses acting at the
indenter contact surface.

In addition, the experimental scenario is not standardized, the relative axis
directions of the indenter compared to the individual bone anatomy of each
volunteer is not reproducible and can thus not be directly compared.

The small number of volunteers as well as their ‘‘constitution’’ do not allow
statistical interpretation of the data. Such conclusions require an appropriately
designed study involving patient anatomies that differ from a ‘‘norm’’, i.e. anat-
omies exhibiting extremely thin and thick fat and muscle thicknesses. Conclusions
which have been drawn must thus be considered stimulation for more detailed
investigations.

Further information regarding biological variability of human in vivo soft tissue
behavior can be obtained from the force–displacement data of four female (age:
37–70) and six male (age: 24–65) volunteers, depicted in Fig. 5.20. It is apparent
that with increasing age, the female curve characteristics reflect a stiffer material
response. In other words, the younger the patient, the softer the tissue. This is not
the case for male volunteers. However, the small number of volunteers again does
not allow statistical interpretation.

5.2.3 Material Identification I: Elasticity

5.2.3.1 3D Reconstruction and FE Model

Surface Reconstruction: To perform material identification for gluteal skin/fat
and muscle tissue, an FE model of the initially undeformed tissue configuration
including the pelvic bone was built. Since the finite element mesh relies on surface
data, these were derived from the MR-images for the relevant buttock region,
cf. Fig. 5.16, i.e. the right buttock cheek, using the image processing tool MIMICS

(MATERIALISE, Leuven/Belgium). The reconstructed surface included the initial
undeformed state of fat and muscle and bone, as well as the deformed fat-muscle-

Fig. 5.21 3D reconstructed models: a initially undeformed configuration, b fat muscle interface
of a deformed configuration at an indentation displacement of 44 mm
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boundary surface of all deformation steps and the position of the indentation axis
(see Fig. 5.22a).

FE-Compound Model: The reconstructed surface data was meshed using the
HYPERMESH (ALTAIR, Michigan/USA) pre-processor. Both tissue components, skin/
fat and muscle, were modelled with second-order tetrahedral continuum elements,
Fig. 5.22a and b. The nodes in the fat-muscle-interface as well the muscle-bone-
interface were rigidly connected. Thus, relative motion between the components
was not assumed since shear stress was intended to be minimized by orienting the
indentation axis accordingly, as described in Sect. 5.2.2.1. The bone structure as well
as the indenter head were modelled as rigid bodies with the bone structure fixed in
space and the indenter fully constrained, except in the indentation direction.

Skin/fat Model and Muscle Model: To optimize the material parameters for
skin/fat and muscle, the compound model was split into one model containing the
skin/fat layer and another model containing the muscle layer with pelvic bone.
To simulate both models separately, adequate boundary conditions were applied to
both models. This was implemented by prescribing the nodes of the fat-muscle-
boundary (Fig. 5.21b). That means that the top surface nodes in the muscle-model
(Fig. 5.22b) and the bottom surface nodes of the fat-model (Fig. 5.22a) meet all
reconstructed fat-muscle-boundary layers for all deformation steps. The indenter
head in the skin/fat model was moved accordingly. The assumption made hereby,
is that the node prescription between the single deformed layers ise normal to the
particular deformed surface. Boundary conditions for the fat-muscle-boundary, i.e.
the node displacements of the fat-muscle-boundary nodes were derived for the
global directions via a coded routine.

5.2.3.2 Parameter Identification

Constitutive Equation: According to previous outlines regarding mechanical fat
and muscle tissue property evaluation, both tissues exhibit distinct viscoelastic
material behaviour, cf. Fig. 5.15b and d. The following section is concerned with
the determination of the mechanical tissue properties of the steady state or equi-
librium elasticity, i.e. long-term behaviour after relaxation. Hereby, for the con-
tinuum mechanical description of the tissue material, the phenomenological

Fig. 5.22 FE models: a fat model, and b muscle/bone model with prescribed nodes
(highlighted), c compound model including fat, muscle, bone and indenter
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OGDEN-model valid for non-linear isotropic hyperelastic slightly compressible
materials proved to be valuable. Based on the OGDEN-model, the KIRCHHOFF stress
tensor s0 is given by [cf. symbols and outlines in Sect. 3.2—‘‘Continuum
Mechanics’’, Sect. 3.2.6.4, as well as index ‘0’ which refers to steady state elas-
ticity according to (3.272)]
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The assumption of slight compressibility refers to outlines given in (Veronda
and Westmann 1970) and (Fung 1993). Constitutive equations of other forms than
the OGDEN-law may be used as long as they can describe high deformation and
distortion occurring during tissue indentation. The HOLZAPFEL-GASSER-OGDEN-
model has been shown to be more adequate for the elastic and viscoelastic tissue
material description, cf. Sect. 5.2.5.2.

Long-term Parameter Identification: The basic idea in identifying appro-
priate (long-term) material parameters for skin/fat and muscle, which account for
the test conditions, is to simulate the separate fat and muscle model independently
(cf. Fig. 5.22a and b), and to parameterize the material coefficients ak, lk and Dk in
(3.272). The Poisson’s ratio, which is assumed to be m = 0.495 for both fat and
muscle accounting for slight compressibility, was held constant during parameter
optimization. Consequently, D1 was determined from l0 and m using (3.273)4.

The optimization algorithm coded in Fortran and based on the deterministic
SIMPLEX strategy (Spendley et al. 1962) was coupled with the ABAQUS FE-solver
(ABAQUS Inc., Rhode Island/USA) following the inverse FE-method and is
described in detail in Sect. 3.3. The model function fi

M(hi, p) defined in the quality
functional (3.364) represents in the case of (3.272) the indenter force–displacement
relation, the values fi

E and hi are the measured force–displacement data of the
indenter as well as the material parameter ak, lk and Dk which represent the
coordinates of the parameter vector p. The optimization algorithm was subject to
the following constraints setting the norm-parameter m = 2: at each indenter

Fig. 5.23 FE-models for separate material parameter optimization (displacement-driven inter-
face nodes): a fat model, b muscle-bone model
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deformation increment (a) the prescribed nodes of the skin/fat and the muscle
model met the deformed fat-muscle-boundary surface reconstructed from the
MR-images [interface nodes were displacement driven onto the reconstructed
interface surfaces (cf. Fig. 5.23)], and (b) simultaneously, the indenter force along
the indentation axis in the skin/fat model as well as the reaction force along the
indentation axis in the muscle model, both, obtained from property separation,
Fig. 5.18a, met the measured force values obtained from the indentation experi-
ment. For the gluteal tissue-compound an order of parameter N = 2 of the series

Fig. 5.24 Comparison of experimental data and simulation results: a fat, b muscle, and c fat-
muscle compound of a 36 year old male subject

Table 5.3 in vivo long-term Ogden material parameters of gluteal fat and (passive) muscle
tissue of a 35 year old male subject acronym M1 with muscle loading direction transversal to
muscle fibre orientation

j lj (MPa) aj (-) Dj (M-1Pa-1)

Gluteal skin/fat
1 1.1826E-03 -0.10764 16.912
2 6.4386E-08 -31.8953 4.76897

Gluteal (passive) muscle
1 1.02571E-03 1.316402 19.4987
2 1.45209E-07 -18.35932 166.315

Table 5.4 in vivo long-term Ogden material parameters of gluteal fat and (passive) muscle
tissue of a 42 year old female subject acronym F1 with muscle loading direction transversal to
muscle fibre orientation

j lj (MPa) aj (-) Dj (M-1Pa-1)

Gluteal skin/fat
1 2.06387E-04 -1.54834E-01 9.72293E+01
2 3.17440E-11 4.98767E+01 2.48330E+00

Gluteal (passive) muscle
1 1.26648E-03 1.74548E+00 1.58422E+01
2 1.86788E-07 -2.02743E-01 1.91509E+02
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expansion in the constitutive Eq. (3.272) fit the experimental data with sufficient
accuracy. Restrictions regarding material stability (polyconvexity, DRUCKERS’
criterion etc.) were additionally included in the optimization procedure and are
discussed in more detail in Sect. 3.4.

The results of the parameter identification for the skin/fat model (Fig. 5.24a)
and the muscle-bone model (Fig. 5.24b) compared with the evaluated force–dis-
placement data show correlation factors of R2 = 0.957 (skin/fat) and R2 = 0.998
(muscle). The steep ascent of the experimental skin/fat data at high compression
could not be captured precisely, even after running several optimization runs with
different start parameter sets. An agreeable verification was achieved, Fig. 5.24c
by combining both parameter sets into the fat-muscle compound model and
simulating the exact experimental scenario of tissue indentation.

In Table 5.3 the long-term parameter values for human gluteal skin/fat and
muscle tissues from a 35 year old male subject and, additionally from a 42 year
old female subject are shown (Table 5.4). The parameter values for skin/fat and
muscle tissue exhibited stable material behaviour within the maximum nominal
strain range reached when simulating the maximum indenter displacement. Further
tissue parameter sets are supplied at the end of this subsection.

The long-term shear moduli for human gluteal skin/fat and muscle tissue can be
calculated from the optimized parameters. For the male volunteer, using (3.273)1

and (3.273)2 these moduli read for skin/fat G1;S=F ¼ l1;S=F þ l2;S=F ¼ 1182 Pa

and for muscle G1;M ¼ l1;M þ l2;NM ¼ 1025 Pa: The equivalent parameters for
the female volunteer can be derived accordingly.

Compared to the derived long-term value for human gluteal muscle tissue,
(Gefen et al. 2005) has reported that values for G1 for transversally loaded rat
muscle tissue lay in the range of 538 ± 193 Pa. These authors deduced that long-
term transverse shear moduli of human skeletal muscle should be in the order of
250–1,200 Pa. This deduction relied on ex vivo tensile tests of fresh human muscle
fibers extracted during surgical treatment and in vivo elastography of human
muscle. Both tests provided short-term shear moduli which are, according to
(Bosboom et al. 2001), who employed rat tibialis anterior muscles, 1.6–2.0 times
the long-term shear moduli. (Palevski et al. 2006) found long-term shear modulus
values in the range of 700 ± 300 Pa, by performing transversal ex vivo indenta-
tion testing on porcine gluteal muscle. Similarly to Bosboom et al., Palevski et al.
have stated that for porcine gluteal muscle the instantaneous shear modulus is 7–14
times its long-term counterpart. (Van Loocke et al. 2008) reported values for
skeletal muscle long-term properties in the transverse direction of 523 Pa. Derived
material parameters for fully relaxed human gluteal muscle compare well with
long-term shear modulus data of gluteal porcine muscle and estimations for human
skeletal muscle. Comparable values for long-term shear moduli representing in
vivo human gluteal skin and fat could not be found in the literature.

Furthermore, the corresponding long-term elastic moduli for human gluteal
skin/fat and muscle soft tissue can be derived using the calculated long-term shear
moduli as well as the relation E1 ¼ 2ð1þ mÞG1 for gluteal skin/fat to E1;S=F ¼
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3:53 kPa and E1;M ¼ 3:1 kPa for gluteal muscle tissue assuming isotropic
material behaviour.

These derived parameters rely on measurements from one healthy 35 year old
male subject and one healthy 42 year old female subject and therefore may not
generally represent human gluteal soft tissue. Substantial individual variability in
the mechanical properties of soft tissue (cf. Sect. 5.2.2.4) may exist. To provide a
parameter classification accounting for gender, age and state of health, a more
comprehensive study could reveal more detailed information.

The main objective of this subsection was to present a possible technique to
establish biomechanical parameters for skin/fat and muscle tissue in the human
gluteal region. Focus was laid upon the separation of the specific tissue compo-
nents of the skin-fat-muscle compound and furthermore, the identification of the
biomechanical parameters of single tissue types. Although the derived parameters
apply to only a few individuals, the human gluteal tissue long-term moduli agree in
the order of magnitude, as has been previously reported.

Additional tissue parameter data derived from various volunteers is supplied as
follows (Table 5.5):

Critical Review: The above listed parameters are not pure material parameters
but rather ‘‘structural parameters’’ or ‘‘material-structural parameters’’ since the
previously described measurements always involve the anatomical structure of
individual subjects. The parameters thus do not rely on standardized sample
geometries, and a region of proportional elongation and constant stress distribution
over the cross-section does not exist. Such a loading scenario is therefore not
comparable with a tensile or compression test sample as used in a laboratory testing.

The presented approach can, however, be justified by characterizing the tissue
material in vivo in contrast to ex vivo material characterization, which most often
does not adequately reflect existing conditions. Furthermore, the derived structure
parameters sufficiently model complex three-dimensional loading scenarios as
shown in the following paragraph, as well as in the experimental tissue-foam
interaction scenario presented in Sect. 6.2.5.

Fig. 5.25 Model verification: a MR-image, b FE-model, c superposition of MR-image and FE-
model
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Model Verification: Verification of the simulated and measured quantities has
been shown in Fig. 5.24c. In addition, visual comparison of the deformed tissue
shape of the simulation plot at maximum indenter displacement, Fig. 5.25b, with
the corresponding MR-slice image is shown in Fig. 5.25a. It is depicted in
Fig. 5.25c as a superposition of the simulation result on the MR-image (for clarity
only simulated outer skin/fat and muscle and bone tissue contours are shown).

Simplified Procedure for Material Characterization: Using the example of the
male volunteer M1 (cf. Table 5.2), a simplified approach is presented to evaluate
tissue material parameters. This approach is applicable under certain anatomical and
experimental circumstances, provides similar results and is less elaborate and time
consuming. The experimental part involving force–displacement data generation, as
previously described, remains unchanged. The MR-image generation, however, is
strongly reduced and, in the simulation part, instead of a full three-dimensional finite
element model an axissymmetric model is employed. The reduced axissymmetric
model relies on a single (transversal) MR-image only where the axis of rotation is the
indenter axis, cf. Fig. 5.26a. Comparing the results obtained from the full three-
dimensional model and the experimental results shows good agreement, Fig. 5.26b.
One major requirement for this simplified approach is that the location of the
indentation test point is oriented such that the MR-image information is mirror

Table 5.6 in vivo fat and muscle parameter sets derived from axissymmetric modelling

j lj (MPa) aj (-) Dj (M-1Pa-1)

Gluteal skin/fat
1 4,961E-04 -0.9604 4,045E+01
2 8,690E-11 41.26 7,362E-01

Gluteal (passive) muscle
1,025E-03 -4,227E+00 1,958E+01
3,077E-07 -4,540E-01 4,828E+02

Fig. 5.26 Generation of an axissymmetric model based on one MR-slide: a FE-model, and
b comparison between axissymmetric and full 3D-model and experimental data
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symmetric with respect to the image plane and the indenter axis. Additionally, when
rotating the image slice information, especially skin, fat and muscle and bone contour
of one half of the image around the indentation axis, it may not deviate excessively
from the existing anatomical geometry. Hence, this approach involves MR-scanning
to find a test point that fulfills the listed requirements.

The simplified model has the further advantage of a short simulation time,
which is advantageous in iterative parameter optimization simulation.

Further tissue parameters obtained from axissymmetric modelling are provided
in the following (Table 5.6).

5.2.4 In vivo Experiments II: Viscoelasticity

In vivo gluteal tissue properties at steady state elasticity or equilibrium elasticity as
described in Sects. 5.2.2 and 5.2.3, respectively, serve as the basis for determining
tissue viscoelastic in vivo behavior. Generally, these properties are shown in the
force–displacement data provided in Fig. 5.15b and d in terms of force relaxation
and hysteresis, respectively. Here, the relaxation behavior in the force–time dia-
gram is supplied by exponentially decreasing force values as shown in Fig. 5.15b.
In the force–displacement diagram Fig. 5.15d, vertical decreasing force values at
constant displacement (up to the relaxation termination point) can be detected.

The subsequent viscoelastic characterization is based on both creep and
relaxation experiments. Creep testing is of particular interest due to tissue creep
processes taking place during tissue-support interaction in the seated or recumbent
body posture. Here, tissue and support materials are both loaded at transiently
constant forces (body mass) and respond with transiently increasing deformation
(cf. Sect. 3.2.2.2).

Fig. 5.27 a MR-compatible loading device for creep indentation testing, and b transversal MR-
images of the buttock region showing tissue creep deformation at 0.67 and 268 s; positions [1]
and [2] indicate the indenter location and pelvic bone
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5.2.4.1 Creep Experiments

Experimental Set Up: The developed magnetic resonance imaging (MRI) com-
patible loading device as described in Sect. 5.2.2.1 (cf. Fig. 5.13a) was modified so
that creep testing could be conducted at the buttocks in the MRI environment (cf.
Fig. 5.27a). Loading was applied to the skin via a cylindrical shaped indenter head
(Ø35 mm) with a head corner radius of 2 mm. A constant total weight of 3.9 kg
was mounted to a guiding shaft carrying the indenter head. The shaft was sup-
ported by a bushing integrated into the test rig. Bushing and shaft were arranged
vertically and lubricated to minimize frictional effects. To record total skin surface
displacement over time, the shaft was equipped with an incremental position
sensor (WS10; ASM; Germany). Tablets (cf. Fig. 5.27b, position [1]) with a high
fraction of sodium hydrate (LAXOBERAL

�, BOEHRINGER INGELHEIM PHARMA, Ger-
many) were incorporated into the indenter head. This conferred a clearly detect-
able signal to localise the position of the indentation axis in the MRI-environment
for reproducibility in the FE-modelling process. The ground frame of the test rig
was fixed to the MRI table.

Location of the Test Point: The location of the test point was chosen according
to the procedure described in Sect. 5.2.2.1. In this process, the test person’s hip
region was fixed using a plaster mold. The mold was structured so that the pelvis
was tilted at an angle of 45 degrees to ensure the indenter meeting the pelvic bone
(cf. Fig. 5.27b, position [2]) surface nearly orthogonally. Creep indentation at the
buttocks was performed at constant loading using the cine-MR-imaging method to
record one MR-image every 0.675 s.

MRI Scan Data: MR-recording was triggered with the initial release of the
indenter shaft. The data was acquired using a 1.5T MAGNETOM ESPREE

� (SIEMENS

MEDICAL SOLUTIONS, Erlangen/Germany) scanner. A combination of a flex multi-
channel body coil and a spine matrix coil was employed. For the scan a T1-weighted

Fig. 5.28 a Determination of the actual thickness of the deformed skin/fat and muscle layers,
b separated in vivo creep test data of gluteal skin/fat and passive muscle tissue and compound test
data along the indenter axis in the time range of 0–270 s and c detail showing the time range of 0–5 s
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(TR = 54 ms, TE = 1.55 ms, FOV = 420 9 302.6 mm, matrix = 272 9 196,
5 mm slice thickness, flip angle = 80 deg, iPAT factor = 2) gradient echo turbo flash
2D-sequence was used. The slice in the indenter axis plane was scanned 400 times
without interruption in transversal orientation resulting in a total creep deformation
time of 270 s. Longer examination periods were not chosen since significant changes
in creep deformation were not apparent thereafter (cf. Fig. 5.28b and c).

Separating Procedure (Fat and Muscle): Tissue deformation allowed a clear
reconstruction and evaluation from the MR-images. The actual thicknesses li;FðtÞ at
time t of the skin/fat layer and the muscle layer li;MðtÞ was measured along the
indentation axis from the particular image, Fig. 5.28a. With respect to the unde-
formed initial lengths of both layers (skin/fat: l0;F ¼ 27 mm;muscle: l0;M ¼ 56 mm;
the actual change in thickness of the skin/fat layer and the muscle layer along the
indenter axis could be derived.

Displacement–Time-Data: Assigning the measured points in time provided by
cine-imaging to the corresponding tissue displacements, individual displacement–
time data, as depicted in Fig. 5.28b for gluteal skin/fat and muscle tissue, were
obtained. A detailed view of the initial creep data is shown in Fig. 5.28c. Fat and
muscle tissue exhibit a distinct initial elastic response (spontaneous elasticity),
characterized by a steep displacement increase, (until approx. 0.7 s in Fig. 5.28c)
followed by the actual creep process with gradual increasing displacements.

The separated creep data further show that skin/fat tissue marginally contributes
to the overall creep displacement under compressive loading. In this investigation
and linearly related to the initial tissue thickness of fat and muscle, transversally
loaded passive gluteal muscle tissue exhibited a 50 % higher creep deformation
along the indenter axis, compared to skin/fat tissue. A total displacement of
5.4 mm was found for muscle and 1.3 mm for skin/fat (along the indenter axis)
after 270 s of testing. In this case, the particular creep process can be considered as
nearly complete, approaching steady state after approximately 4 min.

Fig. 5.29 Transversal MR-images of the indentation region showing gluteal adipose (white) and
skeletal muscle (dark) tissue deformation at constant indenter displacement of a 10 mm, and
b 40 mm; position [1]: tablet marker position at skin level, [2]: pelvic bone
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5.2.4.2 Relaxation Experiments

The employed test devices, protocols including indentation locations and MR-
settings of relaxation testing are similar to the protocols applied for long-term
material parameter evaluation as described in Sect. 5.2.2.

Stepwise Indentation Procedure: In the first step, long-term elastic tissue
material parameters were established analogue to the procedure described in Sects.
5.2.2 and 5.2.3. Stepwise and cyclic tissue indentation with holding periods was
performed at a constant loading and unloading speed to separate the elastic from
the inelastic tissue material properties.

Relaxation Experiments: After long-term material parameter evaluation,
displacement-controlled ramp-and-hold indentation testing at the buttocks was
performed. Using the MR-compatible loading device (cf. Fig. 5.13a), separate
tissue indentation with a maximum ramp displacement of 10-, 20-, 30-, 40 mm at a
constant ramp speed of 0:68 mm s�1 (equivalent to an (engineering) strain rate of
0:75 % s�1 along the indenter axis) followed by a hold phase of 180 s was per-
formed. Corresponding tissue deformation after each ramp phase was MR-scanned,
Fig. 5.29. Indenter force and displacement were recorded with a time resolution of
0.05 s. The recorded force–time relation at 40 mm ramp displacement together
with the MR-scanned individually deformed tissue geometries after the ramps
served as constraints in the parameter optimization process.

Force–Time-Data: Between the indentation tests, a 20 min pause was introduced
to allow for tissue regeneration (shown to be sufficient since the single ramp phases of
all tests coincided, cf. Fig. 5.30a). Resulting tissue force–time and force–displacement
responses are depicted in Fig. 5.30a and b. Significant force-relaxation occurred
during ramp displacement and at constant indenter displacement after the ramp,

Fig. 5.30 In vivo gluteal tissue compound force-relaxation curves a force–time, b force–
displacement obtained at a constant ramp speed of 0.68 mms-1and various ramp displacements,
and c normalized (by the time at peak force and the peak force) filtered experimental force–time
responses from experimental data provided in Fig. 5.30a
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especially within the first 150 s of relaxation, and most distinctively at indenter
displacements C30 mm

Corresponding to the specific ramp displacement, force relaxation values at cut-
off times were 2.1, 6.7, 17.6 and 49.3 N. Oscillations in the experimental force-
relaxation curves were due to chest motion caused by breathing. The actual tissue
response is characterized by the lowest points corresponding to each load peak
(filtered line in Fig. 5.30). The filtered data at the 40 mm ramp displacement was
used as a target function in the parameter optimization process.

Following guidelines by (Oyen et al. 2005), it can be shown that the normalized
(by the time at peak force t Pmax and the peak force Pmax) filtered experimental
responses, t=t Pmax and P=Pmax of Fig. 5.30a have identical shapes (cf. Fig. 5.30c).
This indicates that the relaxation behaviour of the examined tissue (compound)
material is strain independent and thus can be approached with a quasi-linear
viscoelasticity (QLV) theory (cf. Sect. 5.2.5).

As a result of the tissue compound behaviour, it can be concluded that the
relaxation behaviour of the single components, i.e. gluteal fat and (transversally
loaded) passive muscle, is also strain independent. Further indication of the
applicability of the QLV theory for use in soft (muscle) tissue mechanics is
provided in (Van Loocke et al. 2008).

5.2.5 Material Identification II: Viscoelasticity

FE-Buttock-Models: The viscoelastic characterization of gluteal fat and muscle
tissue and the identification of creep parameters is based on the models depicted in
Figs. 5.21 and 5.22 from volunteer M1. Since experimental creep and relaxation
approaches were established independently, generation of relaxation parameters were
based on more recent anatomical data of the same subject. The anatomy, i.e. fat and
muscle thickness as well as the physical condition of the subject changed between
both experiments. Fat and muscle thickness at the time of the creep experiment were
27 and 56 mm, respectively, (cf. Fig. 5.27) and at the time of the relaxation experi-
ment 23 and 67 mm, respectively (cf. Fig. 5.29). Conduction of material parameter
identification based on two different FE-models is thus indispensible, since, due to
different anatomies and physical condition, different material parameters are expected
(cf. guidelines given in the ‘‘Critical Review’’ part of Sect. 5.2.3.2).

Constitutive Equation for Viscoelastic Behavior: Linear viscoelastic material
behavior at finite strains was assumed for tissue creep and relaxation. The continuum
mechanical description is based on the model proposed by (Simo 1987) with the
KIRCHHOFF stress tensor deriving from (3.334) to (cf. also outlines given in Sects. 3.2
and 3.2.6.5).
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5.2.5.1 Creep-Behaviour

Using the creep data derived in Sect. 5.2.4.1, the viscoelasticity parameters, as
apparent in (3.334) (i.e. relative moduli ki and gi as well as relaxation times sK

i and
sG

i ), can be established in conjunction with the Ogden model. Long-term Ogden
material parameters of fat and muscle tissue of the human gluteal region can be
identified by employing the KIRCHHOFF stress tensor (3.272) for equilibrium elas-
ticity and steady state elasticity (Sect. 5.2.3.2). The volumetric and deviatoric parts
sH tð Þ and sD tð Þ of the KIRCHHOFF stress tensor (3.334) were used in accordance
with (3.336) and (3.337). Hereby, the identification of the Prony series coefficients
ki; gi; sK

i and sG
i was done employing the optimization algorithm as described in

Sect. 3.4. Since cine-MRI provided image data in the indenter axis plane only,
information of the deformed 3D fat/muscle interface surface did not exist.
To compensate, an attempt was made to sufficiently capture in-plane deformation.
Hence, two additional material points in the fat/muscle interface, besides the one

Fig. 5.31 Fit of the experimental data of human gluteal skin/fat tissue and muscle tissue:
a 0–270 s and b detailed: 0–5 s
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on the indenter axis, were selected. For each point an individual displacement–
time relation was established, which then together served as boundary conditions
in the parameter optimization process.

Parameter optimization was performed employing an exact analysis solver
method using ABAQUS

� (SIMULA, DASSAULT SYSTÈMES SIMULIA CORP., Providence,
RI, USA) to provide the particular model functions. The parameter fits on the
separated skin/fat and muscle data showed sufficient agreement, Fig. 5.31, and in
Table 5.7 the derived parameters are shown.

Considering (3.273) and (3.330) and l0 � G0 and using (3.336)3, derivation of
in vivo instantaneous shear moduli based on the long-term values provided in
Table 5.5 (male volunteer: 35 years, 82 kg, 182 m) and Prony series parameters
provided in Table 5.7 leads to G0;S=F ¼ 11:9 kPa for gluteal skin/fat and G0;M ¼
6:6 kPa for passive muscle tissue (where the latter values depend on the employed
compressive strain rate and the ambient temperature).

5.2.5.2 Relaxation-Behaviour

Modelling Assumptions: As described previously, a basic assumption regarding
tissue indentation following the principle of force equilibrium, was that the
indenter force is transmitted through both tissue layers (mainly gluteal fat and
muscle) to be captured at the pelvic bone, which acts as a counter bearing. This
assumption allowed establishment of individual force–displacement characteristics
for both tissue types in the elastic long-term tissue characterization process.
Similarly, the same assumption entails one identical force–time relation for fat and
muscle tissue used as a target function to be fitted in the material parameter
estimation process in the viscoelastic tissue material characterization process

Table 5.7 In vivo Prony series parameters for human gluteal skin/fat and muscle tissue of a
35 year old male subject in conjunction with long-term parameters provided in Table 5.5 for the
male volunteer (35 years, 82 kg, 182 m)

i gi (-) ki (-) si (s)

Skin/Fat
1 8.40641E-001 6.29429E-002, 9.47773E-003
2 4.08043E-002 3.84088E-001 8.78817E-002
3 9.17867E-003 1.73360E-003 4.11343E-001
4 1.01018E-002 2.38561E-001 8.04298E-001
5 4.52944E-005 1.15129E-003 9.88915E+001

Passive muscle
1 8.99379E-001 7.34513E-002 1.53840E-002
2 -6.96537E-002 4.00930E-001 6.74479E-001
3 4.51427E-003 -1.45672E-003 1.40283E+000
4 1.12330E-002 4.27225E-001 4.18451E+001
5 8.38142E-005 1.12759E-003 6.71585E+002
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which is based on relaxation testing. Gluteal fat and muscle tissue geometries are,
however, different. These tissue geometries used in the finite element modelling
process were MR-recorded after the ramp phases of indentation deformation and at
times of constant indenter position (cf. Sect. 5.2.4.2). In addition to the previous
assumption, potential transient displacement of material points of the fat-muscle
interface boundary were assumed to be negligible during the relaxation process
after the ramp. Cine MR-scanning of the interface region during relaxation
revealed no noticeable position change at given spatial and transient MR-image
resolution (pixel dimension: 1.5 9 1.5 mm; Dt = 0.675 s).

Identification of Long-Term Parameters: The HOLZAPFEL-GASSER-OGDEN

model was used for long-term elastic tissue property evaluation (according to
guidelines given in Sect. 5.2.3.2) for an actualized FE-model of the anatomical
structure of the gluteal region (cf. beginning of Sect. 5.2.5). Assuming slight
compressibility as well as isotropy the HOLZAPFEL-GASSER-OGDEN-form (3.300) reads

s ¼ 1
D

J2 � 1
� �

I þ 2 c1 þ
k1

9
�BI � 3ð Þe

k2
9

�BI�3ð Þ2
� �

p
ð4Þ
� � �B:

In the long-term elastic material parameter optimization process, material sta-
bility was ensured by making use of the BAKER-ERICKSEN inequalities (cf. Sect. 3.4
), and the material model from (Balzani et al. 2006)

Slight tissue compressibility was assumed, and POISSON’s ratio was thus
restricted to the range 0:495� m� 0:499 in the optimization process. Established
long-term elastic tissue material parameters are provided in Table 5.8.

Identification of the PRONY Series Parameters: To describe the viscoelastic
(time-dependent) behaviour of gluteal adipose and passive transversally loaded
muscle tissue the HOLZAPFEL-GASSER-OGDEN-model, in the form (3.342) as well as
in the form (3.345) was used.

A FE-model was generated based on the anatomy of the MR-scanned inden-
tation region (cf. Fig. 5.29) at the initially undeformed state to achieve a Prony
series parameter optimization. From this (compound) model, two separate models,
i.e. one model containing the fat anatomy and a second model containing the
muscle and bone anatomy, similar to the models presented in Figs. 5.21 and 5.22,
were created. Second-order tetrahedral continuum elements with an average edge
length of 3 mm were used for tissue representation. Both models were equipped
with the corresponding displacement boundary conditions obtained from the MR-

Table 5.8 Established material parameters w.r.t. (3.300) representing long-term gluteal skin/fat
tissue and passive muscle tissue behaviour with loading direction transversal to muscle fibre
orientation

c1(MPa) D(M-1Pa-1) k1(MPa) k2(-) k(-)

Skin/Fat 9.27942E-004 2.78050E+000 6.56340E-009 1.50920E+002 1/3
Passive muscle 4.40712E-004 2.58623E+001 1.30769E-002 4.68772E+001 1/3
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images of tissue deformation after the single ramp phase and corresponding time.
Parameter optimization was carried out by fitting the parameters to the case of
maximum tissue indentation, i.e. at 40 mm-ramp displacement, due to the most
distinct curve characteristics, i.e. distinct force descent. In the actual fitting pro-
cess, the filtered curve (Fig. 5.30a) was used as a target function.

The models were employed in transient static simulation using the ABAQUS
�

FE-solver to solve the boundary value problem. A four-term Prony series was
adopted for the viscoelastic formulation since shorter Prony series inaccurately
represented the experimental curves. The model function values, i.e. simulated
force–time data, were compared to the experimental relaxation data until agreeable
fit was achieved. Established Prony series parameters are provided in Table 5.9.

Simulation Results: The approach was verified by recombining both models into
one model representing the fat-muscle-tissue compound, i.e. the actual anatomical

Fig. 5.32 Comparison of
simulation results and
relaxation test data

Table 5.9 Established Prony series parameters w.r.t. Eq. (3.342) representing transient gluteal
skin/fat and passive skeletal muscle tissue behaviour with loading direction transversal to muscle
fibre orientation

i gi(-) ki(-) si(s)

Skin/fat
1 1.33240411E-002 1.32003205E-002 2.0
2 3.64287819E-003 3.24971069E-004 40.0
3 3.85165666E-004 5.60416576E-004 80.0
4 1.59997251E-002 1.89029712E-005 200.0
Muscle
1 7.67035335E-001 1.16768944E-002 2.0
2 6.44394623E-002 2.29042100E-004 40.0
3 6.08481439E-004 3.73646787E-004 80.0
4 2.17789168E-002 1.28511319E-005 200.0
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conditions, and simulating the indentation test scenarios at 10-, 20-, 30- and 40 mm
ramp displacement. The simulated indenter force–time data was then compared to
the test data, Fig. 5.32. Simulated displacement–time data is not depicted since the
indenter was displacement-driven and data values thus coincide. The observed
maximum displacement of the fat-muscle interface in the simulation during the hold
phase was found to be B0.5 mm. This is in agreement to cine-MR findings where
interface tissue displacement was not detectable at employed MR-image resolution.

Discussion and Critical Review: Employing the HOLZAPFEL-GASSER-OGDEN-
model to describe tissue properties, the in vivo long-term shear moduli for human
gluteal skin/fat and muscle tissue can be calculated from the optimized long-term
parameters, using the relation G ¼ 2c1 for skin/fat: G1;S=F ¼ 1854 Pa and for
transversally loaded passive muscle tissue: G1;M ¼ 881 Pa: This value is in good
agreement with ex vivo porcine data provided by (Palevski et al. 2006) and (Van
Loocke et al. 2008) who reported values for skeletal muscle long-term properties
in the transverse direction of 700 ± 300 Pa and 523 Pa, respectively. In addition,
(Gefen and Dilmoney 2007) deduced that long-term transverse shear moduli of
human skeletal muscles should be in the order of 250–1,200 Pa.

Derived long-term skin/fat shear modulus is in the range of ex vivo experimental
human adipose and porcine subcutaneous fat data supplied by (Samani et al. 2007)
and (Geerligs et al. 2008) who derived values of 1,073 and 5,600 Pa, respectively.
Here, the ex vivo human data agrees somewhat better with our value representing in
vivo human skin/fat properties. Similarly, in vivo long-term bulk moduli can be
derived from (3.332)1 for skin/fat: K1;S=F ¼ 719 kPa and for cross-fibre muscle
tissue: K1;M ¼ 77 kPa: From (3.330)1 instantaneous shear moduli can be derived
from our data at the employed ramp speed for skin/fat: G0;S=F ¼ 12:7 kPaand for
cross-fibre muscle tissue: G0;M ¼ 911 Pa. Both values are in agreement with col-
lected data supplied by (Gefen and Dilmoney 2007), summarizing instantaneous
shear moduli of human adipose breast tissue and human skeletal muscle in the order
of 500Pa–25kPa and 500Pa–2kPa, respectively.

The presented approach involves creep and relaxation testing at the gluteal
region from one subject and therefore may not generally represent human gluteal
soft tissue. Substantial individual variability in the mechanical properties of soft
tissue has been shown (cf. Sect. 5.2.2.4). The approach, therefore, presents a
methodological concept. Despite these limitations, however, the specified
parameter values provide reasonable agreement with literature data, and based on
our reduced amount of data, passive human cross-fibre skeletal muscle data
compares well to porcine skeletal muscle values.

The applied indentation test procedure provides force data resulting from a 3D
stress state constituted from intrinsic in vivo tissue material properties and the
prevalent interstitial fluid flow and pressure situation. This, test parameters, bio-
logical variability within one species as well as differences in human and animal
tissue material and ex vivo and in vivo differences may contribute to the differ-
ences in previously compared values. We presume that our assumptions regarding
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indentation force distribution made previously in this subsection under ‘‘modelling
assumptions’’ sufficiently apply. One indication that these may be sufficient is the
reasonable agreement with data provided elsewhere.

Experimental data show that over 80 % of the total relaxation occurs within the
first 100 s of constant indenter displacement. During this time, substantial stress-
relaxation of over 35 % occurred. Figure 5.30a indicates that a hold phase of 180 s
is sufficient to reach steady-state even at higher compression. Force relaxation
values at the end of the hold phases correspond well to long-term elastic values
obtained through the stepwise indentation procedure described previously.
Deviations of values at cut-off time and long-term values of the fully relaxed
tissues were found to be in the range of 4 %. Some limitations can be found in data
fitting: in Fig. 5.32 it can be observed that the fitted ramp peak value as well as the
lowest points corresponding to load peaks in the time interval between 75 and
150 s of the 40 mm ramp displacement curve were not captured accurately. The
overall theoretical result, however, remains close to experimental data.

In vivo indentation tests performed on the human gluteal region demonstrate
that the viscoelastic component plays an important role in tissue mechanical
behaviour and that a significant amount of force relaxation occurs, influencing
tissue mechanics to a great extent. Our tests have been performed at small strain
rates indicating that viscoelastic properties must already be taken into account
when modelling transient tissue properties in similar applications such as tissue-
support interactions during sitting or in virtual surgical guidance simulation.

Transient tissue properties at small strain rates are in the linear viscoelastic
area, and a nonlinear hyperelastic isotropic model extended with a Prony series
reproduces the observed experimental behaviour. Thus, it is appropriate to
represent gluteal adipose and transversally loaded skeletal muscle stress-relaxation
behaviour in this way.

5.3 BOSS-Models

In Sects. 5.1 and 5.2 the mechanical characterization of human soft tissue of the
gluteal region was discussed. Knowledge of tissue properties is indispensable for
the numerical simulation of the interaction between support devices and the human
body or distinct body regions. To complete the modelling process, appropriate
total or partial models of the human body must be digitalized and contain the
following properties:

• Complete and realistic anatomy
• Gender specific differentiation
• Different body sizes and weights (biological variability)
• Use-oriented patho-physiology (e.g. spine curvature)
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• Realistic kinematic properties (in recumbent or seated position, while walking
or running)

• Etc.

Human body models with these properties have been generated as described in
Chap. 2 (The New Approach: BOSS-Procedure) and will by referred to as BOSS-Models.

5.3.1 Procedure

The 3D acquisition of soft and hard tissue (cf. Sect. 5.1) can principally be per-
formed with imaging techniques such as magnetic resonance imaging (MRI) or

Fig. 5.34 Imaging devices: a Magnetic Resonance Tomograph (MRT), b Upright MRT, and
c 3D-full body scanner (VITRONIC Imaging Processing Systems GmbH, Wiesbaden, Germany)

Fig. 5.33 Definition of the main planes and axes of the human body, (Sobotta 2007)
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computer tomography (CT) (see Fig. 5.34a–c). Upright-MRI scanners are avail-
able to scan the human body in the seated or upright position, Fig. 5.34b.

Prior to scanning, appropriate scan settings, such as sequence or weighting (see
for instance T1 and T2-weighting in Sect. 3.1), must be designated to capture the
details necessary for image reconstruction. Scanning provides image slices of the
scanned body region. The slice thickness depends on the complexity of the par-
ticular region and the required level of detail. Three orthogonal planes of the
human body are distinguished: sagittal-, transversal- and frontal (cf. Fig. 5.33):

Sagittal (lateral) plane: vertical alignment to the sutura sagittalis of the
human skull

Transversal (axial) plane: horizontal alignment related to the upright body
position and orthogonal alignment related to the
body’s longitudinal axis

Frontal (coronal) plane: parallel alignment to the satura coronalis of the
human skull

In Fig. 5.33a the planes are shown in relation to the human body, and
Fig. 5.33b shows the sagittal and frontal plane related to the human skull.
To generate the surface at skin level, it can be appropriate to additionally employ
three-dimensional full body scanning, Fig. 5.34c.

To obtain a 3D surface representation of the anatomical body regions based on
two dimensional MR scan images, the greyscale-images must be reconstructed

Fig. 5.35 MR image reconstruction based on transversal MRI scans of the human gluteus:
a pelvic bone, and b hip joints
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accordingly. This is mainly done by manually reconstructing (identifying) the
single tissue types, e.g. skin, fat, muscle, bone etc. of each image slice. Figure 5.35
demonstrates the general reconstruction procedure using the example of pelvic
bone and hip joint identification. Using three-dimensional reconstruction tools, e.g.
MIMICS, the structures are graphically marked and after completion, the marked
information of all slices is combined to generate a three-dimensional surface.

By means of a pre-processing tool, such as HYPERMESH, the reconstructed
surfaces are imported and FE-meshed. The finite element mesh may represent the
anatomy of the complete body or body region at an initial unloaded (undeformed)
state, Fig. 5.36a–c, as well as at any loaded (deformed) state. The single steps are
illustrated in Fig. 5.36d.

A complete human model includes blood vessels, tendons, ligaments, nerves etc.
However, data acquisition from a complete human model using imaging techniques
would be technically difficult and entail formidable work. Also, acquiring (in vivo)
material properties would be difficult and simulating such detailed models would
consume enormous computational power. Thus, a more feasible approach is to
concentrate on the anatomical region relevant to a particular loading scenario and
to model this region as accurately as possible. Such a region might be a section of a
blood vessel to investigate interaction with a stent (cf. Fig. 4.1d). Or it might be to
model skeletal motion, including soft tissue regions, or to investigate the human
foot interacting with a shoe (cf. Fig 4.1b). However, when restricting an investi-
gation to a human body part, the application of finite element modelling requires
intuition and experience to compensate for the mechanical influence of neglected
body regions and to maintain physical correctness.

Fig. 5.36 Steps in the generation process of complete human models, a MRI slices of the human
gluteus, b 3D-reconstruction, c FE-model, and d work flow chart from MR-imaging to finite
element analysis
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5.3.2 Human Head

Knowledge of the mechanical properties of adipose-muscle compounds in the
cheek and neck region of the human head are required to investigate health care
products such as razors, or to virtually guide simulated surgical training. The
shaving process depends on head anatomy and the biomechanical properties of soft
tissue (see Sect. 8.1). Objective quantification of mechanical tissue loading due to
tissue-razor interaction and optimizing the shaving process is based on a numerical
analysis. An adequate human model including the epidermis and dermis can
provide information on the mechanical stress and tissue deformation, as well as
resulting forces on the razor system. Figure 5.37a–f depict transversal and sagittal
MRI scans of the human head (volunteer: 24 years, 79 kg, 180 cm, see Table 5.5)
and differentiated tissue regions as well as the reconstructed surfaces including
head, neck and shoulder region, Figs. 5.37g, 5.38, and 5.39.

5.3.3 Human Spine and Joints

Human models simulating a recumbent or seated body position must adequately
represent the process of sitting or lying down on a body support system and must
reflect tissue stress and strain actually encountered. Modelling the human spine,
hip and knee joints plays an important role in this process. Hence, these anatomical
parts are addressed in detail.

Fig. 5.37 a and c: transversal, and e sagittal MRI-scans of the human head, b, d and f: scan
images including corresponding masked structures, g surface model
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5.3.3.1 Anatomy of the Spine

The human spine incorporates 34 vertebral bodies and is divided into five regions.
The cervical spine consists of seven cervical vertebrae, the thoracic spine of 12
thoracic vertebrae and the lumbar spine, the os sacrum and the coccyx each include
five lumbar and tailbone vertebrae (Sobotta 2007). The vertebrae of the tailbone
are fused and are a rudiment of evolutionary history. The tailbone now serves as
the juncture for gluteal muscles and ligaments. Thus, the spine has 24 free ver-
tebrae, numbered as shown in Fig. 5.40a (Prometheus 2005).

C1 to C7: Vertebrae of the cervical spine (cervical vertebrae) where C1 is
also referred to as ‘‘Atlas’’ and C2 as ‘‘Axis’’

Th1 to Th12: Vertebrae of the thoracic spine (thoracic vertebrae)
L1 to L5: Vertebrae of the lumbar spine (lumbar vertebrae)

Fig. 5.38 a–c CAD model of the head with differentiation of skin, fat, muscle and bone and
d partial FE mesh

Fig. 5.39 3D surface representation of the skull including vertebrae generated from STL data
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Fig. 5.40 Degrees of freedom of the human spine: a numbering and naming of the human
vertebrae, b sagittal flexion, c lateral flexion, and d rotation, (Prometheus 2005)
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5.3.3.2 Kinematics of the Spine

The degrees of freedom of the spine can be divided into the three following motions:
(1) Sagittal flexion, composed of ventral flexion (forward bending) and dorsal flexion
(backward bending) (cf. Fig. 5.40b), (2) Lateral flexion from the neutral position to
the left or right and back (cf. Fig. 5.40c) and (3) Rotation about the ‘‘longitudinal
axis’’ of the spine, from left to right and back to neutral (cf. Fig. 5.40d).

The required stability and mobility of the spine is provided by the intervertebral
discs, the ligaments, the muscles and small vertebral joints connecting the
vertebrae.

With the exception of the first and second cervical vertebra (C1 and C2), as well as
the vertebrae of the os sacrum and the coccyx, contiguous vertebrae are connected by
a vertebral disc. The vertebral discs consist offibrocartilage with a colloidal soft core
(nucleus pulposus) and a fibrous outer ring (anulus fibrosus). The discs provide
damping and shock absorbing properties to the human body. The iliac bone, the
pelvis and the os sacrum are connected via a bony joint (sacroiliac—SI—joint).
Every motion of these anatomical structures of the spine is a consequence of complex
interaction between muscle tension of the abdomen, the diaphragm, back muscles
and respiratory muscles, while permanently overcoming gravitational force.

5.3.3.3 FE-Modelling of the Spine

Based on imaging techniques (MRI and/or CT) acquisition, FE-representation of
the spine including single vertebrae, discs and muscles can be achieved. Such a
model does not contain kinematic information. Modelling of complex interactions
combined with biological variability is not feasible at present since research on
continuum mechanical modelling of active muscles in connection with FEM is still
in progress. Modelling of such complex behaviour in a simplified manner, suitable

Fig. 5.41 a FE-modelling of the vertebrae connection between vertebra L4 and L5 via a
connector definition, b moment–angle characteristics prescribing a (counter) moment at a given
relative angle
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and sufficient for the human models introduced here, is based on an engineering-
scientific approach, described by (Lazarus 2009).

The modelling of the kinematic status of the joints of all vertebrae may be
accomplished in the form of CARDAN-joint definitions (e.g. via CONN3D2 elements in
ABAQUS, see Fig. 5.41a) with arbitrary rotation in all three spatial axes. Modelling of
the dynamic status is done by assigning connector elastic behaviour properties via a
moment–angle-characteristic to each joint element for each spatial axis. Limitations in
motion are prescribed by maximal moment values at the particular ‘‘stop-angles’’.

In Fig. 5.41b moment–angle-characteristics of the fourth and fifth lumbar
vertebrae are shown. The characteristics of all other vertebral joints are qualita-
tively similar, and differ only in angle rotational displacement. According to
Fig. 5.41b, the range between 0 and 102 Nmm represents the ‘‘starting range’’,
between 102 and 103 Nmm the ‘‘working range’’ and (between points A and B) to
106 the ‘‘saturation range’’ of the joint with a motion-stop at point B. In the
depicted example, a partial linear progression is assumed.

Fig. 5.42 Mean values of relative joint displacement (Lazarus 2009)
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5.3.3.4 Angle Displacement between Vertebrae

The relative displacement of adjacent vertebrae differs and strongly depends on
biological variability, i.e. gender, age and physical condition. To assign realistic
joint characteristics, a feasible approach was to adopt literature values,
(Prometheus 2005) and (Kampandji 2001) which however, differ substantially.
Mean values were therefore established, cf. Fig. 5.42.

In Fig. 5.43 and based on the values of Fig. 5.42, the simulated motions of the
FE-spine model are depicted in the dorsal, ventral and neutral mid position as well
as laterally flexed with neutral mid position and a combined motion from both
flexion and a rotation (cf. Fig. 5.40).

5.3.3.5 Hip and Knee Joints

During loading in the recumbent or seated body position, the kinematic modelling
of the joint connections of the spine, as well as of the knee and hip joints, is
simplified by modelling the hinge joints with only one rotational degree of free-
dom. The dynamic modelling of the knee and hip joints is analogue to that of the
spine, employing moment–angle characteristics.

5.3.4 BOSS-Models for Recumbent Posture

Percentile: The percentile definition as a special case of the quantile (also
fractile), as used in statistics, plays in important role in human modelling in the
seated or recumbent body position in automotive or airplane seating. By the use of
percentile (lat. ‘‘hundredth value’’), also percentage rating, a distribution is divided
into 100 equal parts. Percentile thus divides a unit in segments of 1 %, such that
below the 95th percentile, 95 % of all cases will be encountered.

Fig. 5.43 Simulated motions of a FE-spine model: a dorsal-and ventral flexion and neutral mid
position, b lateral flexion and mid position, c combined motion from flexion and rotation
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The population is divided into four percentile groups, namely P5, P50, P75 and
P95. Their body dimensions are documented in the engineering standards DIN 33
402. Accordingly, a P95 male at age 26–40 weighs 101 kg with a total height of
187 cm. In this case, 95th percentile means that only 5 % of the male population is
larger. In the case of the 5th percentile only 5 % of the population is smaller, and
95 % is larger.

BoMo 0: This simplified human model represents the full (outer) anatomy of a
male volunteer without internal anatomical details. The skin surface has been
generated by means of 3D-laser scan technology. The body volume is represented
by linear tetrahedral continuum elements with non-linear elastic and (linear) vis-
coelastic tissue properties (cf. Fig. 5.44). BoMo 0 exhibits natural asymmetry, as is
apparent in the body surface scan. It is suited for simulating realistic interface
stress distribution and its transient change at skin level, due to viscoelastic material
behaviour encountered in body-support interaction.

BoMo 1: In contrast to BoMo 0, this human model based on the female
anatomy; it contains inner anatomical structures (skin/fat, muscles, bones and
organs) and exists in different versions: combined with buttocks, upper leg and
back part structures or as a full body model, cf. Fig. 5.45. For soft tissue mod-
elling, quadratic tetrahedral continuum elements were used with elastic non-linear
in vivo behaviour for fat and muscle tissue.

Fig. 5.44 BoMo 0: completely hyperelastic male model in recumbent position without internal
anatomical structures
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The BOSS-Models used for recumbent body simulation, were generated
employing MR scanning with the volunteer in a face-down position. This ensures
scanning of the gluteus and the back in an unloaded, undeformed state (the
gravitational effect is disregarded).

Substantial differences in the male and female pelvic structure causes differ-
ences in (internal) mechanical tissue stress and strain, when analysing interaction
with the same seating or bedding support device. To illustrate these gender specific
anatomical differences, Fig. 5.46 shows a male and a female pelvic bone in

Fig. 5.46 a Anatomical differences between a male and a female pelvis, b human pelvis model

Fig. 5.45 BoMo 1: female model for recumbent position: a bone structure, b gluteal muscles,
c skin and fat tissue, d with additional back part, and e full body model with organs
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superposition, (Prometheus 2005). The female pelvis is larger than the male
counterpart, the male pelvis is more massive and narrowed.

BoMo 2 to BoMo 5: A male and a female BOSS-Model (BoMo 2 and 3 and
BoMo 4 and 5, respectively) with percentile P50 were generated to analyze the

Fig. 5.47 BoMo 2, female model for simulation in recumbent position in front and side view:
a bone structure with single point masses, b gluteal and upper leg muscle groups, and c skin surface

Fig. 5.48 BoMo 4, male model for simulation in recumbent position in front and side view:
a bone structure with single point masses, b gluteal and upper leg muscle groups, and c skin
surface

Table 5.10 Distribution of mass in models BoMo 2–5 in % in the recumbent position (con-
tributions from the forearm (4 %) and the hand (2 %) have been neglected)

Head Shoulder Abdomen Buttocks Upper leg (x 2) Tibia (x 2) Foot (x 2)

7 23 9 17 24 10 4
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mechanical interaction of the male and female body with body support devices.
The outer skin surfaces were based on 3D-body scans in the upright position, cf.
Figs. 5.47, 5.48, and 5.49. Emphasis was laid upon the gluteal and upper leg
regions, to ensure realistic kinematics during simulation of contact interaction with
the supporting device. The anatomy of the body parts was based on MR-scanning
data. To ensure realistic mass distribution throughout the model, lumped point
masses were assigned to meet the mass of the particular body part and the total
body mass, cf. Table 5.10. The soft tissue regions were modelled with quadratic
tetrahedral continuum elements and were assigned non-linear hyperelastic in vivo
material properties calculated from the particular volunteer.

The male and female models are presented with original and modified anatomy,
cf. Table 5.11. The original anatomy was derived from the MR-scan data of all
internal structures, whereas the modified anatomy was derived from a combination
of the internal structures of BoMo 1 with the outer 3D-scan data. The intention
behind this approach was to be able to consider natural biological variability in
humans.

Fig. 5.49 BoMo 4, male model for simulation in recumbent position: a bone structures (spine,
pelvic bone, os sacrum), b gluteal and upper leg muscle groups

Table 5.11 Data for the female and male model in the recumbent position

Sex Weight (kg) Height (m) Age (percentile/years)

BoMo 0 Male 66 1.74 34
BoMo 1 Female 56 1.58 59
BoMo 2 Female (half model, original

anatomy)
54 1.56 30 [P50/18–65]

BoMo 3 Female (half model, modified
anatomy)

54 1.56 30 [P50/18–65]

BoMo 4 Male (half model, original
anatomy)

79 1.80 24 [P50/18–65]

BoMo 5 Male (half model, modified
anatomy)

79 1.80 24 [P50/18–65]
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The female and male models are shown in Figs. 5.47 and 5.48 with bone
structure and gluteal and upper leg muscle groups. Mesh details of the male model
are shown in Fig. 5.49; the female model is meshed accordingly.

The muscle structures of the gluteal muscles are represented by three main
muscle groups, musculus gluteus maximus, musculus gluteus medius and musculus
gluteus minimus. The upper leg muscles are formed by 10 muscle groups. Separate
representation of all of these groups was not done, and all muscles were assumed
to be combined and isotropic in models BoMo1 to BoMo5.

5.3.5 BOSS-Models for Seated Posture

Ergonomics: Variable recommendations with respect to seating position and
sitting posture, in particular upper body and extremity angles, have been proposed
to improve car ergonomics (Babirat et al. 2001) and (Helbig and Jürgens 1977).
In Fig. 5.50 angles between extremities are shown for an ideal sitting posture,
(Babirat et al. 2001) and (Helbig and Jürgens 1977).

In the engineering standards DIN 33 402, current anatomical body dimensions of
individuals between the ages of 18 and 65 are specified and employed by the
automotive industry in crash dummy design. Body dimensions are categorized by
gender and are divided into four age groups: 18–25, 26–40, 41–60 and 61–65 years
of age. These literature and engineering standards have been employed in generating
the BOSS-Models for the seated body position. The joints of the spine and the
extremities and the surrounding tissue elements have been generated to adjust to any
seating scenario, (Lazarus 2009). The definition of the P50 male was used, which
was in good accordance with the body properties of the 25 year old male volunteer
participating in the data generation process, cf. Table 5.12.

The generation procedure for the BOSS-Models in a recumbent position is
described in the following, using the example of the previously mentioned P50
model.

Surface data: Collecting anatomical data from the seated body position in an
undeformed and unloaded tissue state is more laborious, compared to collection
from the upright or recumbent position. The generation of surface data via a
3D-laser scanner requires two steps, due to partial data extinction in covered body
parts. In the first step, the upper body was scanned with the volunteers seated on a
standard automotive seating device. The second step involved scanning the lower
body region in the upright upper body position with a flexed knee angle corre-
sponding to that in the seated position, cf. Fig. 5.51a and b. Additional treatment
and combination of the scan data was then required to obtain the surface model
depicted in Fig. 5.51c.
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Anatomies: The data collection of the internal anatomic structures of the
gluteal and back region was done based on MR-images acquired via an upright
MRI device, Figs. 5.34b and 5.52c. To maintain an undeformed buttock config-
uration, a MR-compatible positioning rig was developed, which kept the volunteer
in a kneeling position (as an alternative to the seated position), Fig. 5.52a and b
and (Ide 2009). During positioning and scanning, the angle settings listed in DIN
33 408 were maintained.

BoMo 6 to BoMo 9: The stepwise generation including skeleton, back part,
gluteal and upper leg muscles, skin/fat tissue and extremities, based on the pre-
viously described surface data acquisition, is depicted in Fig. 5.53. Figure 5.55
shows the compound of muscle and bone structure in detail. The modelling of soft
tissue regions is analogue to that of the model in the recumbent position
(cf. Figs. 5.47 and 5.48). It is based on non-linear hyperelastic in vivo tissue
material properties, evaluated by indentation testing at the buttocks and the upper
legs. In the case of BoMo 8, the model is based on data from a 48 year old
volunteer with a height of 1.75 m and a total body mass of 94 kg with additional
viscoelastic tissue material properties assigned to the gluteal fat and muscle tissue.

Fig. 5.50 Ideal seating position in an automobile according to a (Babirat et al. 2001), and
b (Helbig and Jürgens 1977)

Table 5.12 Body dimensions according to DIN 33 402, compared to those of the participating
volunteer

Dimension DIN 33 402 Volunteer

Total body weight (kg) 78.5 77.0
Total body height (mm) 1,765 1,780
Inseam (mm) 835 840
Shoulder length (mm) 480 485
Seat surface height (mm) 455 460
Seat depth (mm) 500 500
Buttock-knee length (mm) 610 615
Hip width (mm) 375 370
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To illustrate biologic variability, in Figs. 5.54 and 5.55 the models BoMo 6 and
BoMo 8 are shown.

BoMo 9: A female human body model in the seated position, corresponding to
model BoMo 1. It can be used in different versions, depending on the sitting
scenario: buttocks with upper legs and spine or with additional back part for back
rest contact interaction or as a complete full body model. in vivo soft tissue

Fig. 5.51 Body position during 3D-laser scanning: a upper body, and b lower body surface
contour, c combined surfaces in seated position

Fig. 5.52 a Volunteer kneeling in positioning rig, b inspection of angle between upper body and
upper leg, c Volunteer with positioning rig and technical assistant inside the upright MR-device

Fig. 5.53 BoMo 6, male model for seated positions with complete anatomy: a bone structures,
b gluteal and upper leg muscle groups, c buttock and upper leg skin/fat, and d complete body
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behaviour, especially at the buttocks and upper legs, is once more modelled as
isotropic and non-linearly hyperelastic (Fig. 5.56).

BoMo 10 to BoMo 12: BoMo 10 and BoMo 11 are modelled in the seated
position as half and full body models and are analogue to BoMo 2, cf. Table 5.13.
BoMo 12 represents a 43 year old female volunteer with a body mass of 59 kg and
a height of 1.65 m, Fig. 5.57.

Fig. 5.54 Models BoMo 6 and BoMo 8, a comparison of BoMo 6 (left) and BoMo 8 (right),
b BoMo 8

Fig. 5.55 Upper leg and buttock region of BoMo 6 and BoMo 8 in comparison (BoMo 6 left)
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5.3.6 BOSS-Models for Walking and Running

Virtual simulation of biomechanical loading of the human musculoskeletal system
while walking or running, subject to a specific shoe design and material, require
sufficient modelling of the human foot, leg and hip region. The models of the knee,
the upper leg and the complete leg are based on MR-images of a 34 year old
volunteer with a body mass of 75 kg and a body height of 1.82 m.

Table 5.13 Data of male and female human models in seated position

Sex Weight (kg) Height (m) Age (percentile/
years)

BoMo 6 Male 79 1.80 24
BoMo 7 Half model (analogue to BoMo 6) 79 1.80 24
BoMo 8 Male 94 1.75 48 [P50/18–65]
BoMo 9 Female 56 1.58 59
BoMo 10 Female 54 1.56 30 [P50/18–65]
BoMo 11 Half model (analogue to BoMo 10) 54 1.56 30 [P50/18–65]
BoMo 12 Female 59 1.65 43 [P50/18–65]

Fig. 5.56 BoMo 9, female model in seated position including complete anatomy: a bone
structure, b gluteal and upper leg muscle groups, and c skin/fat tissue with back part

Fig. 5.57 BoMo 12, female model in seated position including a bone structure, b gluteal and
upper leg muscle groups, c skin/fat tissue, and d back part
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5.3.6.1 Human Knee

The generation of the knee model was based on a total number of 112 MR-images,
taken sagittally, with a slice thickness of 1.0 mm, cf. Fig. 5.58, (Harchafe 2010).
In Fig. 5.59, the transversal MR-images show the complexity of the required
selection of anatomical structures. Image reconstruction was conducted with
image reconstruction software (e.g. MIMICS), and the reconstructed surface infor-
mation was further processed using appropriate graphic tools (e.g. GEOMAGIC) as
illustrated in Fig. 5.60a.

Figure 5.60c and d as well as Fig. 5.61 depict details of the knee model
including modelling of the collateral ligaments of the patella, the HOFFA’s fat pad
(corpus adiposum infrapatellare), the three muscle groups, as well as a detailed

Fig. 5.60 Femur head: a 3D-reconstructed region, b smoothed surfaces, c FE-mesh, d FE-mesh
of the upper tibia head

Fig. 5.59 Partial selection of anatomical structures (bone, muscle, meniscus, cartilage and
ligaments) of the knee, based on transversal MR-scan images

Fig. 5.58 MR-images of the human knee: a transversal, b longitudinal, and c sagittal scan
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view of the tibia-femoris-roll and slide motion. HOFFA’s fat pad is located in the
knee joint between the tibia heads (condylus tibiae), the ligament of the patella
(ligamentum patellae) and the lower edge of the patella and is covered with a joint
inner skin (membrana synovialis) composed of loose connective tissue including
synovial cells which provide lubrication. Figure 5.61h shows the finite element
model of the complete knee region and Fig. 5.61i shows the anatomical structures
involved in the tibia-femoris-slide motion.

Fig. 5.61 Detailed FE-model of the human knee: a collateral ligaments (yellow), b) detail of
ligament patellae (yellow) and patella (blue), c patella, d HOFFA’s fat pad (magenta); muscle
groups: e flexors, f rotators, g extensors; h knee with skin and adipose tissue, i in detail: tibia-
femoris-roll and slide process

Fig. 5.62 a Transversal MR-scans of the right and left upper leg, and b reconstruction shading of
anatomical structures (bone, adipose tissue and muscle groups), c sagittal MR-scan

5.3 BOSS-Models 231



5.3.6.2 Human Leg and Foot

The following Figs. 5.62 and 5.63, illustrate the single steps from MR-imaging
towards FE-modelling. The reconstruction and simulation of the arteria femoralis
superficialis (AFS) was of particular interest with respect to mechanical loading
during walking and running in combination with an implanted stent device.

Figures 5.64 and 5.65 show MR-scan and finite element models of the complete
leg and foot.

5.3.6.3 BOSS-Models for the Rolling Motion of the Foot

Gait Analysis: To simulate the mechanical interaction of the foot, shoe and
ground during the rolling motion of the foot (walking and running), the muscu-
loskeletal system including the skeleton and the interacting soft tissue regions of
the leg (plantar tissue to hip joint) must be evaluated. The process of walking is a
repetitious pattern of the lower extremities, also referred to as ‘continuous falling’,
(Perry 2009). Walking is distinguished from running by a missing flight phase
where both legs partially lose contact with the ground. A single step (sequence) is

Fig. 5.63 Upper leg: a surface model, b–d FE-models: bone, muscles and arteria femoralis
superficialis (magenta), e FE-model: hip joint, f outer surface including skin and adipose tissue
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referred to as a ‘gait cycle’, whereby each gait cycle is divided into two phases:
(1) stance phase (interval in which the foot is on the ground) and (2) swing phase
(interval in which the foot loses contact with the ground), cf. Fig. 5.66.

Fig. 5.65 FE-model of the human leg: a lower leg including bones, muscles and ligaments,
b complete leg with muscle groups, c skin surface, and d FE-mesh

Fig. 5.64 Human foot: a transversal and sagittal MR-scan, b FE-model: bones and major
ligaments, c and d FE-model including bone, muscle and ligaments and ACHILLES tendon, e FE-
model: lower leg and foot
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In contrast to the swing phase in which one foot is in the air, the stance phase is
defined as the interval in which this foot contacts the ground. The stance can be
divided into three phases: (1) bi-pedal initial stance phase: begin of the stance
phase where both feet are in contact with the ground, (2) mono-pedal stance phase:
the contralateral foot is lifted for swing and (3) the bi-pedal terminal stance phase
where the contralateral foot contacts the ground. With the (next) lift of the foot the
swing phase terminates. At the beginning and at the end of each stance phase, both
feet contact the ground, hence the term bi-pedal stance phase. The duration of one
gait cycle varies with gait motion, and the stance phase represents about 60 % of
the gait cycle. The swing phase constitutes 40 %, whereby the stance phase is
made up of 10 % of both bi-pedal stance phases and 40 % of the mono-pedal
stance phase, cf. (www.biomechanics.de 2009).

To generate a realistic FE-model simulating human motion during walking and
running, particularly foot rolling, human motion and ground reaction forces were
captured and video analysis was performed. The kinematic and kinetic data were
gathered at the biomechanics institute at ETH Zürich/Swiss (supervision by Prof.

Fig. 5.66 Gait cycle during walking with stance and swing phases

Fig. 5.67 a Digitalized marker positions via motion capturing method, b trajectories of the
position markers in conjunction with force measurement ground sensors
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Fig. 5.69 Gait analysis of running motion with markers at defined positions on the leg a with
sports shoes; superposition of image and simulation (right), b via HMC generated and digitalized
kinematic data in perspective view

Fig. 5.68 Gait analysis of walking motion with markers at defined body positions of the leg
a with sports shoes; superposition of image and simulation (right), b bare foot, and c via HMC
generated and digitalized kinematic data
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Müller and Dr. Peter Wolf), as well as at the gait analysis laboratory at the
University Clinic in Heidelberg/Germany (supervision by Dr. Sebastian Wolf).

Human Motion Capturing: The human motion capturing (HMC) method
provides 4D-data including spatial coordinates of material points of an object at
definite times. For optical HMC, reflecting markers are attached to selected points
of the body (skeleton related joint and reference points such as shoulders, hip,
upper leg, knee etc.), Figs. 5.68 and 5.69. The marker reflections are captured by
not less than three and maximally 24 cameras from defined perspectives. The
motion of the single marker points is then digitalized. Based on the camera
positions, the single marker trajectories, or spatial position at any time, can be
derived, Fig. 5.67b, (Wikipedia 2009).

Figure 5.68 depicts two video sequences of the leg of a 34 year old male
volunteer with position markers attached in the bi-pedal initial and the mono-pedal
stance phase in walking motion with sports shoes, Fig. 5.68a and bare foot,
Fig. 5.68b and the corresponding HMC- sequences, Fig. 5.68c. In Fig. 5.69 the
sequences during running are captured. Here, a total of 55 markers captured four
gait cycles in 4.46 s of walking and 2.58 s of running with 12 video cameras at
100 Hz, producing approximately 83,000 spatial coordinates.

Ground Reaction Force and Kinematics: Generation of FE-models of the human
musculoskeletal system, employed for simulating the rolling motion of the foot,
require kinetic information besides kinematic data. Kinematic information is com-
monly gathered via measurements of ground reaction forces during a gait cycle.
Walking and running exhibit the following kinetic and kinematic differences:
according to Fig. 5.70a, the vertical force pattern during walking (at normal speed)
exhibits two maxima during the stance phase of approximately the same magnitude (F1
and F3) and one minimum (F2). The first maximum is caused by body weight shifting
onto one foot at heel contact (BA phase). Simultaneously, the body’s centre of mass
(BCM) is lowered, resulting in upward directed acceleration. The BCM is lifted and in
the mid stance phase (MSt) is moved forward. During this process, the BCM is quickly

Fig. 5.70 a General ground force characteristics during walking adopted from (Perry 2003),
b measured ground reaction forces during walking and running, barefoot and with sports shoes
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moved over the leg, generating the force minimum (F2). Subsequently, the BCM is
lowered during rolling of the forefoot (phase 3) and is ‘captured’ and decelerated, in the
terminal stance phase (TSt), generating the second maximum (F3). The force level then
decreases to zero, due to loss of foot contact with the ground.

During running, the characteristics of the ground reaction forces can be thought of
as a compressed version of the force characteristics during walking. However, only
one force maximum is apparent during running, cf. Fig. 5.70b, which can increase to
twice the body weight depending on the running speed (cf. Fig. 5.70b: body mass of
the volunteer: 75 kg and maximum force of 1,800 N). In general, with increasing
running speed, the stance phase time decreases and the swing phase time increases.
Depending on the running speed, the ratio of stance to swing phase time ranges from
30 to 70 %. Figure 5.70b depicts measured ground reaction force characteristics
during walking and running with sports shoes, as well as barefoot. Here, a complete
force vector has been captured, i.e. one normal component in the vertical direction
and two shear force components in the plane of the ground force plates.

Due to increased ground reaction forces during running, significantly higher
loading on the leg ensues, compared to walking. Furthermore, differences in the joint

Fig. 5.71 FE-models of the complete skeleton with right leg anatomy in the bi-pedal stance
phase in a walking, and b mono-pedal stance phase in running
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interplay occur. During walking, the knee and ankle joint work asynchronously in the
late stance phase when the knee joint flexes and the ankle joint extends. This enables
the upper leg segment to swing forward while the foot is still in contact with the

Fig. 5.72 Sagittal images of the human foot at five different angle positions scanned with an
upright MRI-device (cf. Fig. 5.34b during stance phase: a sequence from left to right, and
b during rolling of the foot (left) as well as volunteer in upright-MRI (right)

Fig. 5.73 Four main joints of the hind foot
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ground, enabling a harmonic swing of the leg. In contrast, during running, the joints
work synchronously (synchronous flexion or extension) during the complete stance
phase. The leg rotation mainly results from hip extension and knee flexion.

FE-Models: The finite element models depicted in Fig. 5.71, including the
complete anatomy of the right leg, were generated. They are based on HMC-data,
combined with the previously introduced FE-models, Figs. 5.60, 5.61, 5.62, 5.63,
5.64, and 5.65, as well as appropriate boundary conditions at the knee and hip
joint, together with characteristic ground reaction force. The Figs exemplarily
show the bi-pedal initial stance phase for walking and the mono-pedal stance
phase for running. A superposition of the simulation results with the respective
video sequences are in good agreement, Figs. 5.68a (right) and 5.69 (right).

To control the positions of individual toes during the foot roll, an upright-MRI
device was employed to generate in vivo images of the foot in five characteristic
angle positions during the stance phase, Fig. 5.72. These images were initially
planned as boundary information to be used in the finite element model, but were
rejected due to insufficient image resolution. To date, no feasible non-invasive in
vivo approach exists to gain information about the transiently changing relative
positions of the bones of the human foot during motion.

Modelling of the Foot Joints: To model the four foot joints, namely the upper
ankle joint, the lower ankle joint, the talonavicular joint and the naviculocuboidea
joint, cf. Fig. 5.73, the single cartilage layers were modelled to achieve a realistic

Fig. 5.74 Joints of the metatarsus
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slide and roll motion. A friction coefficient of 0.01 was assumed between the car-
tilage layers. Since the inter-cuneiform joints only permit minor movement, they
were assumed to be elastic and modelled as a continuum. Relative motion of the
interconnected bones of the metatarsus (os cuboideum, os cuneiforme) and ossa
metatarsi (tarsometatarsal joint) as well as ossa metatarsi and toes (basic joints) was
modelled via hinge joints. Kinematic modelling of the bone connections was done
analogue to the vertebrae, using defined stop functions to limit relative motion.

Toe modelling was simplified by assuming the phalanx row (cf. Fig. 5.74) as a
continuous segment. The joint connections between the phalanx bones were thus
neglected. Besides the nine phalanx joints, 22 of the total 31 foot joints were modelled.

5.3.7 BOSS-Model for Crash (Upper Body)

To increase passenger safety in automobile crash scenarios, as well provide enhanced
pedestrian protection, the automobile industry, the German ADAC association and
other organizations have conducted crash tests employing crash test dummies made of
technical materials. Besides expensive dummy test devices, fully equipped automo-
biles are tested, both of which involve considerable cost. Progress in computer
technology, together with simulation software have made crash simulations a well-
established approach in car manufacturing. To date, crash simulations involve digital
copies of real physical dummies. Recently, however, approaches have included digital
human body models, allowing realistic simulation of the entire human body, including
the skeleton, muscles, soft tissues, organs and vessels.

With the help of these human body models, virtual crash scenarios can be
simulated and more realistic conclusions can be reached regarding risk of pas-
senger injury. However, such models have not yet received common acceptance,
since they require further refinement.

A simulation model for high-speed scenarios, based on anatomical data of the
BoMo4 model (cf. Table 5.10 in Sect. 5.3.4) as well as BoMo 6 (cf. Table 5.13 in
Sect. 5.3.5) and material data derived at equivalent high strain rates for bone,
tissue etc. is presented. The BOSS-Procedure (as described in Chap. 2) is employed
with appropriate testing equipment.

Figure 5.75 exemplarily illustrates a single step in the finite element model
generation process using the example of the kidneys. Figure 5.76 shows different
views of skeletal structures, mainly of the thorax region, and Fig. 5.77 includes inner
organs such as the heart, aorta, vena cava as well as liver, spleen and kidneys.

Figure 5.78 shows the model as depicted in Fig. 5.77, including the lungs, Figs. 5.79
and 5.80 depict the muscle groups and the adipose tissue with skin, and Fig. 5.81
provides an overview, showing the outer skin surface with organs and skeleton.
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Fig. 5.76 Bone structure of the head, thorax and pelvis in different perspectives

Fig. 5.75 Surface generation of organs e.g. the kidneys: a MRI scans, b 3D-reconstruction, and
c skeleton of the thorax
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Fig. 5.78 Analogue to Fig. 5.45 with lungs

Fig. 5.77 Bone structure of the head, thorax and pelvis with trachea (0) heart (1) liver (2) spleen
(3) kidneys (4) aorta (5) vena cava (6) tailbone (7) and pelvis (8)
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Fig. 5.79 Muscle groups of the upper body

Fig. 5.80 Skin surface
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Fig. 5.81 Analogue to Fig. 5.80 with inner organs
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Chapter 6
Mechanical Interactions

Abstract Interaction simulations of body support devices generated in Chap. 4
and human BOSS-Models as introduced in Chap. 5 are presented. The effects of
body supports on tissue, in terms of internal tissue stress and strain, are evaluated.
After the pressure sore problem is discussed, finite element model verifications are
presented based on the interaction simulation of a human buttocks model and a
soft foam support (Sect. 6.2). Finite element analysis of elastic and viscoelastic
interaction between human BOSS-Models and comfort and anti-pressure sore
supports as well as automotive and aircraft seats (Sect. 6.3) are described. Tissue
stress and strain distribution at various contact body sites at the skin level and the
fat–muscle interface and at the bone surface are evaluated and compared. Simu-
lation results are compared to findings provided in the literature (Sect. 6.4).

6.1 Introduction

Numerical methods, for instance the finite element method (FEM), not only pro-
vide insight into the stress–strain state of tissue under mechanical loading, but also
allow evaluation of the effects of different support designs on the incumbent body.
Thus, by quantifying mechanical tissue stress, predictions about the adequacy of
the particular support can be made, as has previously been performed by others
Todd and Thacker (1994) or Oomens et al. (2001). Using the FE-method, from a
mechanical point of view, the stress–strain state within the loaded tissue mainly
depends on (a) the choice of soft tissue material parameters, (b) the body support
material and design, as well as (c) the modelling of the anatomical structures. Soft
tissue material parameters used here represent in vivo human gluteal skin/fat and
in vivo human passive (and transversally loaded) muscle tissue properties. They
have been derived via a combined iterative numerical–experimental approach
based on in vivo non-invasive testing on human subjects, as described in detail in
Sect. 5.2. These tissue properties rely on both long-term material tissue behaviour

G. Silber and C. Then, Preventive Biomechanics,
DOI: 10.1007/978-3-642-29003-9_6, � Springer-Verlag Berlin Heidelberg 2013

245

http://dx.doi.org/10.1007/978-3-642-29003-9_5
http://dx.doi.org/10.1007/978-3-642-29003-9_5


as well as on viscoelastic tissue behaviour. The exclusive use of long-term tissue
properties, however, seems justified since pressure sores are clinically observed to
develop over minutes to hours while human tissue stress induced experimentally
recedes within seconds to minutes, to reach a nearly constant level (Palevski 2006;
Silver-Thorn et al. 1999), also cf. Sect. 5.2.4. The effect of tissue viscoelasticity
may thus be secondary, especially during recumbent body interaction where, due
to constant body loading, tissue creep effects dominate.

Similar to human soft tissue property evaluation, the foam support materials
presented here partially showed distinctive time dependent material behaviour.
They were, however, mainly characterized by their long-term, elastic material
response, as described in Sect. 4.2.1.2. In particular cases where strong visco-
elastic effects were observed, materials were characterized via creep and relaxation
experiments.

Another crucial issue in terms of numerical stress evaluation, besides
mechanical material characterisation, was adequate anatomic modelling of the
pelvis, especially the region forming the pelvis floor. The pelvis region is a region
particularly prone to pressure sores. Simulation has shown that the stress distri-
bution at the tissue–sacrum bone-interface is strongly influenced by the compli-
ance of the pelvic diaphragm musculature. Thus, adequate anatomical modelling
of this region is mandatory. MR-imaging shows that the gluteal tissue during
compressive loading, with the body in a recumbent position, tends to displace
towards the abdominal cavity, deforming the pelvic diaphragm musculature. This
amplifies the relative movement of tissue to adjacent bony structures and the
resulting stress additionally depends upon the magnitude of displacement of the
pelvic diaphragm musculature.

In the following, body supports and anti-decubitus systems are introduced
together with introductory and historical remarks regarding pressure sore aetiology.

6.2 Mattresses and Anti-Decubitus-Systems

6.2.1 Diagnostic Findings of Decubitus

According to the most recent definition by the national pressure ulcer advisory
panel (NPUAP, Washington, DC, USA), pressure ulcers (also decubitus or pressure
sores) are localized injuries to the skin and/or underlying tissue. In the process of
sore formation, sustained mechanical loading plays a preeminent role. According to
a survey conducted in Germany among institutions of geriatric care, the incidence
of pressure sores is 3 % amongst people requiring external care and assistance in
personal hygiene and eating at least once a day. This figure increases to up to 20 %
for those in need of intensive care (Leffmann et al. 2002; Halboom 2005).

An estimated 400,000 people per year in Germany develop a form of pressure
ulcer that requires treatment. Specifications on prevalence in German hospitals are
10 %, in geriatric clinics and nursing homes around 30 %. Figures indicate an
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incidence rate of 1.3 % during inpatient health care. Prevalence is especially high
among the bedridden elderly and those who suffer impaired sensation. Once a sore
has developed it represents a trauma for the patient and treatment is elaborate and
costly. As a result, total annual costs are estimated to be 1–2 billion Euros in the
Federal Republic of Germany alone (Leffmann et al. 2002) similar figures apply
for the UK (Bennet et al. 2004).

Lesion severity ranges from superficial skin irritation in patients with tran-
siently impaired sensation to deep sores in long-term immobilized patients. Life-
threatening infections and/or the necessity for surgical treatment may ensue. Thus,
pressure sores contribute considerably to morbidity and mortality in immobilized
patients. Figure 6.1 shows body regions prone to sore formation.

Different classification guidelines grade pressure ulcers according to severity,
cf. e.g. Dealey and Lindholm (2006). These include numerous stages each defining
a different grade of tissue damage. Pressure ulcer grading helps provide risk
assessment of potential pressure ulcer development and helps determine the extent
of tissue damage. It furthermore permits prevalence and incidence surveys which,
as additional information, help judge effectiveness of body support devices.
Although there have been several grading systems introduced, up to 14 as reported
in Halboom (2005), probably the most widely used is that developed by the
NPUAP and the European pressure ulcer advisory panel (EPUAP), the European
counterpart, cf. Table 6.1. Historically, the first well-documented pressure ulcer
grading system was introduced by Shea (1975), defining each stage by the extent
of tissue damage. As a common feature, all classification systems focus on visible
examination of the skin and signs of skin breakdown.

Clinical observation shows that pressure ulcer development is progressive and
can either begin in superficial skin layers or may originate from deep subdermal
layers, spreading to superficial dermal and then epidermal layers (Daniel et al.
1981; Quintavalle et al. 2006; Bliss 1993). The NPUAP has recently redefined the
definition and the stages of pressure ulcers, and defined deep tissue injuries (DTI)
as ‘‘a pressure related injury to subcutaneous tissues under intact skin’’. This
revision was initially accompanied by the debate about whether these injuries are
truly pressure ulcers. In fact, DTI is a very severe form of pressure ulcer which
progresses more quickly and involves more extensive ulceration than superficial
ulcers. Due to the fact that the skin is most often intact, DTI is commonly mistaken
for a grade-I pressure ulcer or even a bruise. This misjudgement can have a
profound impact on patient outcome, liability, and reimbursement. Often, by the
time the ulcer is detected, clinical intervention is complicated and the prognosis
uncertain.

Deep tissue injury is not a new discovery. Shea’s early grading system referred
to DTI using the term ‘closed pressure sores’. A century earlier, in 1873, Sir Paget,
who was the first to officially relate pressure ulcers to local external loading, noted
a form of ulcer erupting from intact skin.

Due to the DTI phenomenon it is not sufficient to investigate the mechanical
tissue situation under body weight loading exclusively at the skin level, but also in
deeper tissue layers. Mechanical evaluation tools, however, like a pressure
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mapping system or a rigid buttocks model, customarily used for judging mattresses
or cushions cannot provide detailed information on the tissue situation under
loading caused by other body supporting devices. In fact, such systems, due to
their functionality, only provide rudimentary pressure information at the skin level.
They cannot assess potential mechanical changes in deeper tissue layers or eval-
uate shear stress. Based on numerical studies, the skin level surface pressure does
not provide any information on the internal tissue loading status. Information on

Fig. 6.1 Primary body
regions prone to pressure sore
formation
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deep tissue loading due to a body supporting device is necessary to judge effec-
tiveness of the support materials and/or design. By means of simulation methods,
this information can be quantified, visualized and advantageously used towards
design optimization. In addition, to improve interpretation of in vitro and in vivo

Table 6.1 Classification of pressure ulcers: citations from NPUAP; most wound pictures
adopted from the EPUAP pressure ulcer classification self assessment (Epuap-Puclas 2009)

Grade-I. Intact skin with non-
blanchable redness of a localized
area usually over a bony
prominence. Darkly pigmented
skin may not have visible
blanching; its colour may differ
from the surrounding area

Grade-II. Partial thickness loss of
dermis presenting as a shallow
open ulcer with a red pink wound
bed, without slough. May also
present as an intact or open/
ruptured serum-filled blister

Grade-III. Full thickness tissue
loss. Subcutaneous fat may be
visible but bone, tendon or
muscle are not exposed. Slough
may be present but does not
obscure the depth of tissue loss.
May include undermining and
tunneling

Grade-IV. Full thickness tissue loss
with exposed bone, tendon or
muscle. Slough or eschar may be
present on some parts of the
wound bed. Often include
undermining and tunneling

Suspected Deep Tissue Injury.
Purple or maroon localized area
of discoloured intact skin or
blood-filled blister due to
damage of underlying soft tissue
from pressure and/or shear. The
area may be preceded by tissue
that is painful, mushy, boggy,
warmer or cooler as compared to
adjacent tissue

Unstageable. Full thickness tissue
loss in which the base of the
ulcer is covered by slough
(yellow, tan, gray, green or
brown) and/or eschar (tan, brown
or black) in the wound bed
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animal experiments that have contributed to current knowledge on the aetiology of
the pressure sore, numerical simulation is indispensible.

Currently, various anti-decubitus systems (static/dynamic) are commercially
employed in patient body support, all claiming to provide ‘pressure-relief’ and
decubitus prophylaxis (see Figs. 6.2, 6.3, 6.4, 6.5). The GERMAN INSTITUTE FOR

SANDARDIZATION (DIN) released a directive in 1977 defining material specifications
and testing requirements for soft foam hospital mattresses. Despite widespread use

Fig. 6.2 a Two-layered, structured soft foam mattresses with structured inlays (Dunlopillo) and
b with a gap between the upper and lower layer (Anti-Decubitus-System Viscoelastic� M 801 B,
Wulff MedTec) in perspective and cut view

Fig. 6.3 Three layered anti-decubitus matress Thevo Adapt Plus 100 (without incontinence
cover): a perspective view and b cut view

Fig. 6.4 Micro-stimulation-system (MiS): a mattress and base frame with elastic wing leaf units
(b, c) single wing leaf unit in top and perspective view (THOMASHILFEN)
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and current industrial efforts at improvement, the standard has neither been revised
nor adapted to new support materials and designs. Other shortcomings are that
testing methods are not standardized and their value is limited to measuring
interface pressures or static/dynamic reaction forces.

6.2.2 Common Support Systems

Many mattresses, cushions and other devices are available for pressure sore pre-
vention as well as to increase comfort. These systems can be divided into static
(passive) and dynamic systems. Dynamic systems most often include alternating
pressure. Objective evaluation, however, of the mechanical effects of the supports on
the tissue, is lacking. Static devices most often involve polymeric soft foam material
as the primary mechanically significant material in contact with body tissue. An
approach to mechanically characterize such materials is presented in Sect. 4.2
Many different mattress designs are available. In Fig. 6.2 two different double-
layered, structured soft foam mattresses with structured inlays (Fig. 6.2a) incorpo-
rating a gap between the upper and lower layers (Fig. 6.2b) are shown. The DUN-

LOPILLO mattress (a) is designed for comfort whereas the VISCOELASTIC mattress (b) is
claimed to provide decubitus protection (WULFF MEDTEC). Figure 6.3
displays a 3-layered soft foam anti-decubitus mattress (Thevo Adapt Plus 100,
THOMASHILFEN). In Fig. 6.4, a mattress base frame with active elastic wing leaf units
for micro stimulation (MIS) is shown. A newly developed body supporting system
based on the principle of pressure and back pressure (BIODYN) is presented in Fig. 6.5.

Fig. 6.5 Pressure relief system based on the principle of pressure and back pressure (BIODYN)
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6.2.3 FE-Model Verification

Chapters 4 and 5 referred to the mechanical characterization of materials employed
in body support systems (BSS) and the generation of human models (BOSS-Models),
including characterization of soft tissue material properties of relevant body regions.
Whether the material characterizations reflect complex three-dimensional behaviour
during mechanical interaction must be verified in separate tests. One such verifica-
tion experiment follows, whereby the interacting components are the human gluteal
region on one side and a defined support material sample on the other. In a second
step, the experiment is FE-modelled and simulated and simulation results are
compared with experimental data. The employed material parameters have been
established in Sect. 4.2 (support materials) and Sect. 5.2 (human soft tissue) and are
summarized in Tables 4.2, 4.3, 4.4 and Tables 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9.

6.2.3.1 Buttock Loading Experiment

To validate the previously established material parameters for gluteal fat and
muscle tissue under complex loading, an indentation experiment was experi-
mentally performed as well as numerically simulated. Data acquisition was
performed on the same male individual from whom long-term tissue data had been
derived (see Sect. 5.2.3.2, Table 5.3). The experimental requirement was to ensure
defined reproducibility in the FE-modeling and simulation process. Due to this, the
face-up supine body position was discarded since it involved an error-prone test
set-up in the geometrically restricted MRI-environment. Instead, a foam sample
was pushed onto the buttock tissue in a controlled manner.

The subject was placed face-down in a plastic holder (see Fig. 6.6a). The hip
was fixed using a plaster mold attached to the base frame of the holder. This
ensured embedment so that the pelvis could not escape the outer loading. Fixed to
the top plate and positioned directly above the skin surface, block-shaped high
resilient open-cell polyether soft foam with the dimensions H 9 W 9 D:
100 9 350 9 220 mm was pushed onto the buttock, vertically displacing the plate
for Du = 64 mm. This displacement value was derived through separate testing
outside the MR-environment where vertical reaction forces of the following
configurations were compared: (a) body in face-up supine position on a foam
support whereby the support for the buttocks was separated from the support for
back and legs and (b) body in face-down position in the holder with the foam
support specimen displacement recorded until the forces coincided with those
encountered in the face-up position. Thus, the force value corresponding to buttock
support was determined.

The foam specimen displacement was mechanically driven, and the top plate
was guided at all four edges, ensuring horizontal positioning (see Fig. 6.6b).
To gain visible contour information of the foam specimen in the MR-environment,
the outer surface of the specimen was covered with a thin film of soft paraffin. The
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gel roughly covered the foam surface but did not deeply penetrate the foam cells to
avoid influencing its mechanical properties.

Tablets (Laxoberal�, Boehringer Ingelheim Pharma GmbH, Ingelheim,
Germany) with a high fraction of sodium hydrate, conferring a clearly detectable
signal in the MR-environment served as position markers. They were incorporated
into the foam fixation plate to identify identical positions of FE-model and
MR-images at the stage of comparison.

MRI-scanning was conducted using a conventional 1.5 T system (Magnetom
Espree�, Siemens, Erlangen, Germany). Transversal images of the entire buttocks
(c.f. Figs. 6.9 and 6.10) of the initially unloaded as well as the loaded configu-
ration were made. Twenty minutes passed after initial tissue loading to allow all
interacting materials to reach steady state before scanning the loaded configura-
tion. This time elapse was based on the findings regarding creep testing with the
specific foam sample material. In addition, conducting creep and relaxation testing
on human gluteal soft tissue showed nearly steady state values at times [5 min.

MRI-settings were chosen as follows: slice thickness -2 mm without gap, field
of view 400 9 450 mm, matrix 456 9 512, a combination of a spine matrix coil
and a Flex multi-channel coil was employed, a T1-weighted spine echo sequence
using transversally oriented integrated parallel imaging was used, repetition/echo
time 550/13 ms.

6.2.3.2 FE-Model Generation

To provide three dimensional surface data of the buttocks at the initial unloaded
state, corresponding MR-images were reconstructed using the image processing tool
Mimics�. A FE-model including bone structure, gluteal muscle groups (assumed as
combined) was built (Fig. 6.7a–c) upon the reconstructed image data utilizing the
HyperMesh� pre-processor. Both tissue components, fat and muscle, were modelled
using second-order tetrahedral continuum elements. The constitutive Ogden model
for non-linear, hyperelastic, isotropic, slightly compressible materials (3.272)
(cf. Sect. 3.2.6.4) was used to model soft tissue behaviour. First-order hexahedral

Fig. 6.6 a Test holder with foam specimen attached to top plate and test person in face-down
position––schematic. b Buttock loaded with foam specimen
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continuum elements were used to model the foam specimen, and the constitutive
Hill model for non-linear, hyperelastic, isotropic, highly compressible materials
(3.274) (cf. Sect. 3.2.6.4) was used to describe soft foam behaviour. Bone structures
were assumed to be rigid and hip joints were fixed. Bones and adjacent tissue were
assumed to be rigidly combined. The musculature of the pelvic diagram was
modelled following the approach introduced in Then et al. (2008). The abdominal
cavity was assumed to be a homogenously filled and nearly incompressible con-
tinuum and tissue parameters close to those assigned for gluteal muscle were
assigned. Contact interactions were defined between skin surface and foam speci-
men, as well as between the skin surfaces of the intergluteal cleft.

The boundary conditions of buttock and foam specimen were defined according
to test conditions, i.e. abdominal skin surface nodes were fixed, whereas the bone
structure was free to move. Bottom surface foam specimen nodes positioned at the
foam fixation plate were displacement driven and free to move only in the vertical
loading direction.

Tissue-foam contact interactions according to the experimental conditions were
simulated performing a static analysis using the Abaqus� FE-Solver.

6.2.3.3 Verification of Polyurethane Soft Foam Material

As an additional verification of soft foam material behaviour under defined loading,
a MR-based test was introduced loading a foam sample with a plastic sphere. Visual
comparison was done by superimposing the MR-image at the centre position of the
sphere (Fig. 6.8a) with the corresponding result obtained through FE-simulation
(Fig. 6.8b) at section cut view. A good match was achieved, comparing the outer
foam specimen contour of the FE-result with the corresponding MR-image
(Fig. 6.8c). The results indicate that the lateral straining of the compressed speci-
men could be modelled well with the derived soft foam material parameters. The
sphere exhibited a wall thickness of 3 mm which led to a detectable gap between
water filling and foam surface (cf. Fig. 6.8a and c). In Fig. 6.8c, for clarity, the FE-
sphere model is depicted as the boundary line encircling the MR-signal image
caused by the water filling.

Fig. 6.7 Buttock FE-model: a bone structure, b gluteal and femoral muscle components, c skin/
fat tissue
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6.2.3.4 Verification of Buttock-Soft Foam Interaction

The contours of gluteal skin/fat and muscle tissue and foam specimen under
interacting contact loading obtained from MR-imaging were compared against the
FE-simulation results using Abaqus/Viewer�. For clarity, images depicted in
Figs. 6.9 and 6.10 were revolved about 180�, in contrast to the experimental set up
previously described.

To show that the model of the initially unloaded configuration (Fig. 6.9a) was
appropriately reconstructed and set up, the FE-model in cross-section and the
corresponding MR-image were superimposed at defined signal marker positions,
in Fig. 6.9b positioned at the ischial tuberosity. The FE-bone structures are
depicted in white. The FE-mesh of fat tissue and foam appears as a dashed contour,
whereas the mesh of the muscle tissue has been omitted to clearly depict the
boundary match of the MR-image and FE-model.

Fig. 6.8 Centre view: a MR-image of the foam specimen loaded with a sphere, b FE-simulation
result at steady state, c superimposed MR-image with FE-simulation

Fig. 6.9 Buttock cross section view with foam contour at the unloaded state: a MR-image of the
buttocks: fat tissue in white, muscle tissue in dark grey, foam contour: white lines, position
marker at bottom centre, b superimposed MR-image and FE-mesh
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In the loaded configuration with the foam specimen pushed onto the gluteal
tissue, the MR-image (Fig. 6.10a) and the corresponding FE-simulation result
were superimposed (Fig. 6.10b). Again, FE-muscle tissue has been omitted in the
overlay image to depict boundary matching. Gluteal fat and muscle tissue
deformation in the relevant region comprising buttock skin/fat tissue and the
gluteal muscle groups, showed good accordance with the experimental data.

Reconstructing the MR-image data of Figs. 6.9a and 6.10a and comparing both
deformed and undeformed configurations, Fig. 6.11a shows that the gluteal tissue
and the foam support material are strongly deformed during the compression test.
Here, the deformed configuration is coloured in dark grey, whereas the initial
unloaded configuration is light grey. Fixed references in the overlay for the two
configurations of the gluteus were the bone structures. Colouring of muscle tissue
was omitted for clarity.

Fig. 6.10 Buttock cross section view with foam contour at the loaded state: a MR-image and
b superimposed MR-image and FE-mesh

Fig. 6.11 a In-plane overlay of transversal edge boundaries (fat, muscle, bone, foam support)
from reconstructed MR-images in the loaded (dark grey) and unloaded (yellow) configuration.
b In-plane overlay of experimental MRI results with simulation on squared grid: displacement
deviation in dark grey
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Figure 6.11a shows that loading causes the tissue to displace vertically and
laterally. Maximum vertical in-plane displacement of the foam (index ‘‘F’’) was
DuF = 35 mm and for tissue (index ‘‘T’’) DuT = 22 mm.

To more objectively compare the quality of the experimental versus the
simulation results, the single in-plane boundary edges of deformed skin/fat, muscle,
bone and foam have been extracted from the MRI-image and the simulation result. In
this process, reconstruction from the MRI-image was done by digitalizing the
boundary edges using Mimics�. Similarly, deformed FE-model geometry was
exported utilizing the HyperView� capabilities of the Altair HyperWorks� package.
In-plane boundary model edges were extracted by trimming the deformed geometry
with the transversal plane running through the position marker point. Boundary
edges of MR-image and simulation were superposed on a squared (260 9 420 mm),
indexed, 5 mm pitch grid (Fig. 6.11b). The displacement deviation is depicted in
dark grey. Intervals with 5 mm pitch were set to provide discrete points on all
boundary curves to establish a measure of correlation.

A PEARSON-Correlation of R2 = 0.999 was found comparing the lateral bulk
deviation of the foam support resulting from the simulation with the MRI-
finding. Here, equal vertical spacing was maintained. Deformation of fat tissue in
the experiment compared to the numerical result shows a correlation of
R2 = 0.998 with constant vertical spacing, and R2 = 0.996 with constant hori-
zontal spacing.

6.2.3.5 Discussion

The skeletal striated gluteal muscle with its coarse heterogeneous parallel structure
of bundled fibres exhibits anisotropic material properties. As a first approximation,
however, and for the purpose of mechanical modelling, passive gluteal muscle
tissue is assumed to be isotropic and homogenous. The fibre direction of gluteal
muscle is assumed to play an inferior role during mainly transversal loading, as
present with the body in a supine position.

The mechanical properties of soft tissue may only be simulated accurately if the
microstructure can correctly be physically described. Then, phenomena regarding
relevance can be judged and decisions about whether modelling of structures on
the micro scale is reasonable and a possible macroscopic description justified.
Irrespective of the question of availability of mechanical properties of cellular
structures, numerical simulation of real applications such as buttock/support
interaction has not until now been feasible on the micro scale, due to lack of
computational capacity. However, modelling tissue on the macroscopic level using
the aforementioned assumptions provides results which reasonably agree with
experimental findings, as shown in this study.

In-plane boundary edges of simulated skin/fat and muscle tissue in the
deformed state strongly correlate with MRI findings. These findings give reason to
use previously derived tissue parameters in full body simulations involving
complex tissue loading at finite strains.
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The analyses described previously were performed employing data from a single
individual. Clearly, there is substantial individual variability in the mechanical
properties of soft tissue (see Sect. 5.2.2.4), and parameters employed in the
described study may not represent human gluteal soft tissue properties in general.
However, to support design optimization regarding tissue stress/strain reduction,
basic design principles can be derived without parameter sets corresponding to a
population differing in age, gender and physical tissue condition. Such design
optimization by means of FE-analysis is based on a relative result comparison since
damage threshold values for individual tissues are still pending in the literature.

Another discussion issue relates to the comparison of tissue deformation
exclusively at tissue interfaces, i.e. at the skin surface and the fat–muscle interface.
Tracking distinct material points beside the tissue boundaries is difficult.
Furthermore, comparison was performed for one single in-plane region only, i.e.
the transversal plane at the ischial tuberosity. Anatomical sites at different trans-
versal positions have not been examined. However, reasonable accordance of
tissue behaviour at sites adjacent to the examined position may be assumed. This
assumption relies on the reasonable accordance at the considered in-plane position
where deformations of the complex tissue anatomy are additionally strongly
affected by adjacent tissue deformation.

6.2.4 Critical Body Sites

Body sites where tissue stress and strain accumulate during static recumbency or
sitting are depicted in Fig. 6.12. At positions 1 and 2 high direct compressive
stress occurred during recumbency, whereas at position 3 maximum direct stress
occurred during sitting. Lateral to positions 1, 2 and 3 maximum shear stress and
strain occurred at positions 1a, 2a and 3a.

Finite element modelling of the buttocks inevitably faces the problem of how to
represent the region underneath the sacrum and the coccyx as well as at the
posterior border of the body of the ischium. This includes the pelvic diaphragm,
which is spanned with muscle fibers of the musculus levator ani, the musculus
coccygeus, and associated connective tissue, cf. Fig. 6.12. The representation of
this region should not be underestimated since MR-images taken from an unde-
formed, free-hanging buttock compared to a body-weight loaded buttock indicate
that the pelvic diaphragm musculature relative to the adjacent bone structures
deforms introversive into the abdominal cavity, subject to loading. Depending on
the compliance of this particular model region, simulated stress and strain differed
significantly. Low compliance resulted in low localized tissue stress, high com-
pliance increased stress magnitude up to more than one order of magnitude.

Performing tissue-support interaction simulation, this stress/strain dependence is
exemplarily shown with the buttock simulated on a homogenous soft foam support
and altering the compliance of the pelvic diaphragm region. Within these simulations
low compliance is synonymous with fixed nodes connecting the pelvic diaphragm
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region to the rigid body bone structure. High compliance, however, corresponds to
neglect of the pelvic floor muscles. Tissue then moves introversive, without
restriction. Particularly, stress magnitude at the tail bone is mostly dependent on this
effect. Regarding the difference in stress values due to modelling, it is feasible that if
the compliance in the pelvic floor region is not taken into account, the efforts made to
characterize material parameters of support and tissue material are dispensable.

6.2.5 Interaction FE-Analysis Comprising
Body-Support-Systems (BSS)

Based on the model verification of the previous Sect. 6.2.3.4 it can be assumed that
complex interaction scenarios can also be simulated quite realistically. Thus, in the
following, various Body-Support-Systems (BSS) including elastic and viscoelastic
materials are presented in interaction with different BOSS-Models. Mechanical skin
level as well as internal tissue stress and strain (especially in the gluteal region)
resulting from these interactions are simulated, analyzed and compared.

In the interaction modelling process, the BOSS-Models, especially the FE-model
of the gluteus was based upon anatomically adequate, 3-dimensional surface data
obtained from MR-images as described in Sect. 5.3. In addition, compliance of the
pelvic diaphragm musculature was taken into account. Simulation of body-support
interaction was performed by loading the mattresses with the BOSS-Models in a
supine position. Hereby, the pelvic bone structure was free to move in the vertical
loading direction and to rotate about the lateral body axis. All other degrees of
freedom were constrained.

In the following outlines, the symbol Sij is used for CAUCHY Stress, equivalent to
rij as used in Sect. 3.2.4. Similarly, LEij and NEij are used for logarithmic strain
and nominal strain, respectively, where NEij is equivalent to the definition of the
generalized GREEN–LAGRANGE strain tensor Ga

g :¼ Va � Ið Þ=a for the special case

Fig. 6.12 Pelvic bone
structure with region
(yellow, hatched) covered
by the pelvic diaphragm
musculature and mesh
refinement at the sacral
bone region
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a = 1, where V is the left stretch tensor defined in Sects. 3.2.3.5 and 3.2.3.6,
respectively.

Generally, in body-support interaction analysis on the supine body, anatomical
regions of increased tissue stress and strain can be identified. They correlate to
diagnostic findings of pressure sores in the gluteal region, cf. positions 1 and 2 in
Fig. 6.13.

Static and transient static analysis were conducted to quantify tissue stress and
strain at the indicated body sites, i.e. the sacrum (median sacral crest and spinous
tubercles) and the ischial tuberosities, cf. Figs. 6.13 and 6.12, respectively.
Viscoelastic effects of tissue and foam materials were accounted for and material
parameters have been provided in Tables 4.2, 4.3, 4.4 and Tables 5.5, 5.6, 5.7, 5.8,
5.9. For the static analysis, the corresponding long-term parameters were used.
Tissue direct (vertical) stress S33, logarithmic direct strain LE33 and logarithmic
shear strain LE23 (see Fig. 6.14 for axis directions) were evaluated at element
integration points at the skin level, the fat–muscle interface and at the pelvic bone
structure.

6.2.5.1 Elastic Body-Support-Systems (E-BSS)

In the following, the interaction behaviour of the contact partners, technical sup-
port device (TSD) and BOSS-Model, was analyzed solely based on their elastic
material properties using the materials parameters based on the identification

Fig. 6.13 Qualitative agreement of anatomical regions 1 and 2 of increased tissue (direct
vertical) stress from simulation (a) and diagnostic findings of a grade-IV pressure sore (b).
Regions of increased compressive stress are depicted in red. Image (b) is adopted from
(www.consumerjusticegroup.com)
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regarding the corridors of the experimental force–displacement data constituting
the equilibrium elasticity (cf. Sects. 4.2.1.3 and 5.2.3.2).

Comfort Related Systems: The interactions of the human body model BoMo1
(cf. Sect. 5.3.4) and four elastic body support systems (E-BSS) defined in the
following and employed for comfort purpose (HR: ‘‘high resilient’’, VE: ‘‘visco-
elastic’’) are presented and simulation results are compared:

Fig. 6.14 Interaction simulation of the body model BoMo1 and a homogenous HR soft foam
mattress, b VE material, c DUNLOPILLO-design and d WULFF-design showing vertical direct stress
contours at static equilibrium
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• E-BSS 1: Homogenous block-shaped soft foam HR-material (Fig. 6.14a)
• E-BSS 2: Homogenous block-shaped soft foam VE-material (Fig. 6.14b)
• E-BSS 3: Two-layer structured soft foam mattress (DUNLOPILLO-Design, top

layer: VE-material, bottom layer: HR-material, Figs. 6.14c and 6.2)
• E-BSS 4: Two-layer structured soft foam mattress with gap (WULFF-Design, top

layer: VE-material, bottom layer: HR-material, Figs. 6.14d and 6.2)

For comparison purposes, all mattresses have equal dimensions
(L 9 W 9 H = 1280 9 560 9 120 mm). Figure 6.14a–c depict the employed
mattresses in loaded configuration with and without body model.

The contour plots, Fig. 6.14a, d qualitatively show that interface pressure dis-
tribution varies, depending on the particular support mattress material and design.
Regions of increased compressive stress are depicted in red.

In the following, tissue stress and strain evaluation at the body sites 1 and 2 of
Figs. 6.12 and 6.13 is presented. Static analysis was performed for all four
mattresses under body weight loading. Tissue stress and strain at element inte-
gration points were evaluated and compared at static equilibrium. Tissue stress and
strain evaluation was done along a path leading through the tissue and indicated by-
‘‘1!  2’’, cf. Fig. 6.15, initiating at skin level (path distance = 0.0 mm) and
running to the bone surface. The previously described paths are depicted in cross
sections views at the sacrum, Fig. 6.15a and at the ischial tuberosity, Fig. 6.15b.

Tissue stress and strain quantities are depicted in the following figures,
Figs. 6.16, 6.17, 6.18, where the pink shaded background indicates the thickness of
the skin/fat tissue layer and curve markers indicate the affiliation to the particular
foam material/design, i.e. high resilient HR foam, viscoelastic VE foam,
DUNLOPILLO-design and WULFF-design.

Comparison of tissue direct stress components S11, S22 and S33 at the ischial
tuberosity and the sacrum shows that values nearly coincide, Fig. 6.19.

The static analysis previously presented provides insight into tissue stress/strain
distribution at static equilibrium, i.e. at time t!1. From the previous figures
derived from static interaction analysis, it can generally be concluded that

Fig. 6.15 Path locations at the sacrum (a) and at the ischial tuberosity (b). Abbreviations: F: fat
tissue (pink), M: muscle tissue (brown), B: bone (grey), S: support, 1?/2: path initiating at
position 1 and running to position 2
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• Stress/strain distribution at the skin level (path distance = 0.0 mm) differs from
the internal tissue stress/strain distribution (path distance [ 0.0 mm),

• Tissue stress/strain distribution is dependent on the particular body support,
• Stress values at the sacrum exceed stress values at the ischial tuberosity by one

order of magnitude for the two employed foam materials,

Fig. 6.16 Tissue direct stress S33 at the ischial tuberosity and the sacrum on a path initiating at
skin level (0 mm) and leading to the bone surface (ischial tuberosity: 48 mm; sacrum: 6.3 mm).
Pink shaded region indicates skin/fat tissue depth at investigated siteso

Fig. 6.17 Logarithmic direct strain LE33 at the ischial tuberosity and the sacrum on a path
initiating at skin level (0 mm) and leading to the bone surface (ischial tuberosity: 48 mm;
sacrum: 6.3 mm). Pink shaded region indicates skin/fat tissue depth at investigated sites
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• The fat–muscle interface at the ischial tuberosity region represents a minimum
or an inflexion point in the stress/strain curves and, in addition, a sign change of
shear strain.

Comparison of tissue direct stress components S11, S22 and S33, Fig. 6.19 shows
that stress quantities are of similar magnitude. This may be interpreted as a ‘‘nearly
hydrostatic’’ state of pressure in the tissue at the investigated body site under body
weight loading. This is especially apparent in tissue regions adjacent to the bone
surface. Results of Fig. 6.19 are based on the homogenous mattress design
employing HR- and VE-foam material. Using highly resilient HR-foam material,
tissue direct stress components show higher congruence compared to viscoelastic
VE-material.

Related Medical Systems: The following four anti-decubitus systems used in
medical care are analyzed by means of FEA. The E-BSS materials are as follows:

• E-BSS 5: Homogenous block-shaped soft foam SAF-material (Fig. 6.20a)
• E-BSS 6: Contoured 3-layer soft foam support with a SUPRA-SAF-SUPRA

material compound (Fig. 6.20b)
• E-BSS 7: Contoured 3-layered soft foam support with SAF-material solely

(Fig. 6.20b)

Material characteristics of the above introduced materials are highly visco-
elastic for SAF material and highly resilient for SUPRA material. Regardless of the
particular support material and geometry, numerical simulations show that at the
pelvic bone surface in the supine position under loading, particular anatomic
points accumulate stress. These points are situated at the ischial tuberosity, the
posterior superior iliac spine, the sacral bone edge laterally and the tail bone

Fig. 6.18 Tissue logarithmic shear strain LE23 at the ischial tuberosity and the sacrum on a path
initiating at skin level (0 mm) and leading to the bone surface (ischial tuberosity: 48 mm;
sacrum: 6.3 mm)
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Fig. 6.19 Tissue direct stresses S11, S22 and S33 at the ischial tuberosity and the sacrum on a path
initiating at skin level (0 mm) and leading to the bone surface using VE- and HR-foam support
material and a homogenous mattress design

Fig. 6.20 Contour plot of S33 stress of the buttock model in half symmetry sectional view
depicting the left buttock side including upper leg at static equilibrium: a homogenous soft foam
support (E-BSS 5), b contoured soft foam support (E-BSS 6 and E-BSS 7)
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laterally, i.e. the bone structures that span the diaphragm musculature. At these
sites except the ischial tuberosity, the direct Cauchy stress component S33 and the
Cauchy shear stress component S13, both considered in global spatial directions,
dominate. At the ischial tuberosity the shear stress component S23 dominated.
Direct stress magnitudes exhibited their highest values at the bone surface and in
the muscle layer, not in the skin–support interface. This agrees with numerical
results previously reported Todd and Thacker (1994) or Oomens et al. (2003) or
Linder-Ganz and Gefen (2007) and is consistent with surgical findings revealing a
cone shaped necrosis, with the base situated on the bone surface, in a majority of
decubiti cases, (cf. Quintavalle et al. 2006) or Bass and Phillips (2007). Regarding
the skin surface, direct compressive stress S33 has been shown to exceed shear
stress by one order of magnitude. Adjacent to the bone surface, up to three orders
of magnitude greater direct stress dominated, depending on the position, cf.
Table 6.2.

Influence of the Support Material and Design: Dominating tissue stress
values at static equilibrium evaluated at the most loaded gluteal body sites are
listed in Table 6.2. Herein, effects of homogenous and contoured foam support
using the same material as well as consistent outer specimen dimensions were
compared.

The contoured SAF foam support showed a similar stress magnitude as its
homogenous SAF counterpart (Table 6.2). Likewise, the Supra material which
showed a stiffer material response in material testing than SAF material, showed
similar tissue stresses. The virtual foam material, however, resulted in an increase
of tissue stress by a factor of 2. The stiffer virtual support material showed tissue
stress at the sacral bone surface to have tripled, compared to values at the skin
surface (Figs. 6.21a, 6.22a).

A general characteristic of all body sites considered and of all materials used
was that direct compressive stress did not continuously increase when approaching
the bone. It rather initially decreased passing through the fat tissue to reach its
minimum values at the fat–muscle interface and, proceeding through the muscle
tissue, it again increased to finally exceed the skin values at the bone surface

Table 6.2 Stress measures (absolute values) at specific bone sites and corresponding nearest skin
positions specified for homogenous and contoured soft foam, both composed of SAF support
material, with respect to body weight loading

Position Foam homogenous—SAF Foam contoured—SAF

S33

(MPa 9 10-3)
S13

(MPa 9 10-3)
S33

(MPa 9 10-3)
S13

(MPa 9 10-3)

Skin Bone Skin Bone Skin Bone Skin Bone

Sacral bone edge 4.9 10.2 0.17 9.1E-03 4.9 10.9 0.18 8.6E-03
P. s. iliac spine 4.5 9.6 0.31 0.29 4.5 9.3 0.33 0.38
Ischial tuberosity 4.6 8.7 0.15 0.11 4.1 8.2 0.13 0.11
Tail bone 3.3 6.5 0.15 7.4E-02 2.8 6.7 0.16 6.4E-02
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(Figs. 6.21a, 6.22a). Stress paths originating from the skin (point A) and ending at
the sacral bone edge and at the ischial tuberosity (point B) are depicted in
Figs. 6.21b and 6.22b, respectively. Stress curves along the nodal paths were
generated for contoured and homogeneous foam using SAF material and for con-
toured foam using the stiffer virtual material. The path distance displayed the true
distance of the deformed tissue layers at the particular sites at static equilibrium.
Fat and muscle layer thickness at the lateral sacral bone edge were 7.5 and
9.6 mm, respectively, 17.4 and 25.7 mm at the ischial tuberosity.

Based on the presented simulations, it has been shown that at all considered
sites all direct stress components Sii (i = 1, 2, 3) were approximately of the same
magnitude, Fig. 6.23a, stress progress was qualitatively and quantitatively similar.
In addition, the direct stress components were almost equivalent to the principal

Fig. 6.21 a Comparison of direct compressive stress S33 progress from the skin surface through
the fat and muscle layer onto the sacral bone edge surface for the homogenous and contoured soft
foam support. b Buttock model in section cut view at position of crista sacralis mediana on
contoured SAF foam support: S33 contour plot at static equilibrium

Fig. 6.22 a Comparison of direct compressive stress S33 progress from the skin surface through
the fat and muscle layer onto the ischial tuberosity for the homogenous and contoured soft foam
support. b Buttock model in section cut view at the ischial tuberosity on contoured SAF foam
support: S33 contour plot at static equilibrium
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stresses, exemplarily depicted for the nodal path at the sacral bone in Fig. 6.23b.
Thus, it seems that at all investigated tissue sites the stress state could be inter-
preted as a ‘‘quasi-hydrostatic’’ state of pressure. Furthermore, von Mises stress
turned out to be more than one order of magnitude smaller than direct stress.

Regardless of the particular support material and geometry at all investigated
sites, nominal direct tissue strain reached peak values within the muscle tissue near
the fat–muscle interface. Shear strain however, was locally minimal at the
fat–muscle interface and reached peak values at the bone surface. Figure 6.24a
depicts nominal strain values along a nodal path underneath the ischial tuberosity,
originating at the skin surface (point A, Fig. 6.24b and ending at the bone surface
(point B, Fig. 6.24b).

Discussion: When exposed to body weight loading, human gluteal tissue
showed maximal stress in tissue adjacent to bone and not at the skin. As has
previously been proposed by Todd and Thacker (1994) and Oomens et al. (2003),
this further questions the usefulness of interface body pressure measurement

Fig. 6.23 a Direct stress along nodal paths at specific buttock sites. b Comparison of direct stress
with the principal stress along a nodal path at the sacral bone

Fig. 6.24 a Nominal strain along a nodal path originating at the skin leading towards the ischial
tuberosity. b Buttock model in cut view at position of the ischial tuberosity on contoured foam
support: contour plot of the nominal direct strain component NE33 at static equilibrium
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systems, commonly used for pressure measurement of seated or recumbent
subjects, to judge anti-decubitus effectiveness of body supports. Such systems
permit rudimentary estimation of mechanical pressure to the skin surface but do
not capture interface shear stress or internal tissue stress. Since internal tissue
stress differs from interface stress, a more comprehensive study is necessary to
establish a possible relation between interface and internal stress. Should a relation
exist, then pressure mapping systems can continue to play a role in body support
evaluation. However, should no relation be apparent, it is possible that an effective
support design cannot be made with the help of such systems.

The simulation has shown that contoured foam, with the same material and
outer dimensions of a homogenous support, does not ensure less tissue stress,
despite the claim. A virtual support material, stiffer than the investigated soft
foams, exhibited a strong effect on tissue stress distribution. It is possible to
evaluate stress evaluation on the skin surface and in deep tissue regions using
different support materials. Thus the simulation approach can further advance anti-
decubitus support design and can prove or disprove sales arguments.

The stress–strain evaluation within the tissue showed direct stress components
to be nearly of the same magnitude and, in addition, to be almost equivalent to the
principal stress. Furthermore, direct stress dominated shear stress by up to three
orders of magnitude (Table 6.2). The impact of individual stress components on
cell damage and tissue necrosis is uncertain. Several hypotheses regarding the
effects of mechanical loading on tissue have been proposed. Uniform volumetric
compression could lead to capillary occlusion and limit nutritive blood flow to the
microvasculature. In addition, increase of ambient pressure may lead to disturbed
cell metabolism. Shear strain, in contrast, may lead to pathological cell wall
deformation, in turn causing cell breakdown. Damage thresholds, however,
depending on different stress and tissue types, have not been determined. Possibly,
cell breakdown may be much more sensitive to shear loading than to normal
loading. Thus, the finding in the previous investigation that shear stress is sig-
nificantly smaller than direct stress does not automatically imply that shear stress
plays an inferior role in tissue necrosis.

The modelling technique, including the pelvic floor, showed high impact on
internal tissue stress distribution.

6.2.5.2 Viscoelastic Body-Support-Systems

In contrast to E-BSS (Sect. 6.2.5.1), the following considerations focus on the
interactive behavior of the BSS and BOSS-Model comprising viscoelastic tissue and
support material properties. The material parameters used are provided in Table 4.4
in Sect. 4.2.1.5 and in Table 5.7 in Sect. 5.2.5.1 and in Table 5.9 in Sect. 5.2.5.2.

Comfort Related Systems: The following FE-analysis is based on the support
systems E-BSS introduced in Sect. 6.2.5.1 and the human model BoMo1
(cf. Sect. 5.3.4).
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Static Transient Analysis: Tissue direct stress, logarithmic direct strain and
logarithmic shear strain were evaluated at element integration points. This was
carried out over a simulated time span of 3 h in transient static analysis using the
homogenous mattress design, E-BSS 1 and E-BSS 2 (homogenous HR- and
VE-foam material, respectively), Figs. 6.25, 6.26, 6.27, 6.28, 6.29, 6.30.

The static transient analysis previously presented provides insight of tissue
stress/strain distribution as a function of time including viscoelastic tissue material
behaviour. From the previous figures, Figs. 6.25, 6.26 and 6.27 derived from static
transient interaction analysis, several observations can be made:

• Direct stress S33 is significantly higher at the sacrum using the E-BSS 2 system
compared to E-BSS 1 system (in this context, it is important to mention that the
reason for higher stress and strain at the sacrum with VE-foam as opposed to HR-
material, is likely due to the employed mattress thickness of 120 mm and that
VE-material tends to highly compress (block) at the sacrum region. Blocking
effects of VE-material may thus inappropriately influence tissue stress/strain
results and may show a greater influence on the tissue than the material itself).

Fig. 6.25 Tissue direct stress S33 at skin level, fat–muscle interface and bone surface as a
function of time adjacent to the ischial tuberosity using E-BSS 1 and E-BSS 2 body supports

Fig. 6.26 Tissue direct stress
S33 at skin level and bone
surface as a function of time
adjacent to the sacrum using
E-BSS 1 and E-BSS 2 body
supports

270 6 Mechanical Interactions



• Skin level tissue direct stress S33 at the ischial tuberosity using the E-BSS 1
system does not decrease until after approx. 15 min, and a nearly constant level
is reached after 2 h.

• At the sacrum using the E-BSS 1 system, constant tissue direct stress S33 is
reached after approx. 15 min, whereas at the ischial tuberosity stress declination
is still in progress.

• At the ischial tuberosity, bone level logarithmic direct strain increases steadily
over the considered time span.

• At the ischial tuberosity, the highest shear strain S23 occurs at skin level.
• At the ischial tuberosity, shear strain is increased distinctively with the E-BSS 1

system (may be associated with the effect of increased buttock tissue
displacement when seated, as discussed in Sect. 7.2).

• At the skin level of the sacrum, with E-BSS 2 system, shear strain strictly
decreases over the considered time span.

• At the ischial tuberosity, taking absolute direct and shear strain values into
account, at the skin/fat level, higher strain can be detected compared to the
muscle tissue at the bone surface. An objective conclusion about spatial

Fig. 6.27 Tissue direct logarithmic strain LE33 at skin level, fat–muscle interface and bone
surface as a function of time adjacent to the ischial tuberosity using E-BSS 1 and E-BSS 2 body
supports

Fig. 6.28 Tissue logarithmic
direct strain LE33 at skin level
and bone surface as a
function of time adjacent to
the sacrum using E-BSS 1
and E-BSS 2 body supports
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initiation of pressure sores in conjunction with both investigated foam materials
may, however, not be drawn since muscle tissue might be more susceptible to
deformation or hypoxia than fat tissue cells.

6.2.5.3 Elastic–Viscoelastic Body-Support-Systems (EVE-BSS)

The tissue–support interaction between the human model BoMo 0 and a homog-
enous mattress support (SAF material) is described whereby the viscoelastic
material behaviour of the foam support and elastic properties of the tissue material
properties are employed.

The interaction between BoMo 0 and a particular support may be conceptu-
alized as follows. During contact of the elastic model with the viscoelastic support,
the process is ‘‘answered’’ in a viscoelastic manner. Due to constant body loading
a simultaneous superposition of relaxation and creep phenomena takes place.

Definition of the stress paths: the contact interface stress between support and
tissue (without anatomical structures), Fig. 6.32, and stress along two paths on skin

Fig. 6.29 Tissue logarithmic shear strain LE23 at skin level, fat–muscle interface and bone
surface as a function of time adjacent to the ischial tuberosity using E-BSS 1 and E-BSS 2 body
supports

Fig. 6.30 Tissue logarithmic
shear strain LE23 at skin level
and bone surface as a
function of time adjacent to
the sacrum using E-BSS 1
and E-BSS 2 body supports
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Fig. 6.31 a BoMo 0 in contact with a body support. b Definition of skin stress paths at the BoMo
0 model: stress path 1 at skin level at the os sacrum (brown) and path 2 at skin level at the ischial
tuberosity (blue)

Fig. 6.32 Interface stress S33 (red colour indicates higher values) in contact surface of body
model BoMo 0 on a viscoelastic support surface (soft foam material SAF) at five different points
in time and at static equilibrium
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level, Fig. 6.31, are evaluated and compared. Path 1 (brown) proceeds along the os
scarum region and path 2 (blue) proceeds at the ischial tuberosity region.

Figure 6.32 exemplarily depicts the interface stress S33 at skin level at six dif-
ferent points in time: initially (no contact) and 6 h (static equilibrium). A distinct
increase of contact area and a decrease of contact stress can be observed as the time
increases.

Figure 6.33 depicts the stress decrease due to contact with the viscoelastic
support material over a time span of 8 h. In addition, the stress state at both
indicated regions at infinite time is given. The observed asymmetry of the stress
paths is based on the (natural) geometric asymmetry of the pelvic of the BoMo 0
model (the model has not been built based on mirroring a half model, but on the
actual MR-scan and manual reconstruction of both body sides). It can be observed
that for foam material SAF, the skin stress beginning at 5 s decreases to a nearly
constant level after 2 h.

Figure 6.34 points out the simultaneously existing time effects of the elastic
tissue properties of the BoMo 0 and the viscoelastically defined SAF material at a

Fig. 6.33 Skin interface stress along the stress path 1 and path 2 exemplarily for foam material
SAF as a function of six points in time: a path 1, b path 2

Fig. 6.34 Time effects of a tissue material point of the body model BoMo 0 and a viscoelastic
homogenous support material SAF: a skin interface stress relaxation, b zoomed image of the
initial relaxation process of a and c displacement–time curve of the chosen tissue material point
in the gluteal region (creep)
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chosen tissue material point at skin level at the gluteal region (situated approx. at
mid length of path 2 in Fig. 6.31b). In Fig. 6.34a and b, a distinct decrease of
contact stress S33 and material point displacement can be observed, respectively.
Both phenomena have not reached steady state after 30 9 103 s (approx. 8.3 h). In
this process, the increased displacement of the chosen tissue material point can be
most adequately compared to the stress decrease and most likely will consume
more time before reaching steady state.

6.3 Car- and Airplane Seats

6.3.1 Introduction

In Sect. 6.2, the numerical mechanical interaction between various bedding
systems and BOSS-Models was analyzed, whereby particular emphasis was put
upon internal tissue stress and strain evaluation in the gluteal region. Critical sites
of increased stress and strain were found to be situated adjacent to the bone
structure of the os sacrum (see Fig. 6.12). The same approach can be applied to
body-seat interaction involving automotive and airplane seating systems, where
tissue stress and strain is evaluated in the gluteal and upper leg region.

6.3.2 Usual Seating Systems

Figure 6.35 depicts the seat systems (automotive seat systems: car seat A,
Fig. 6.35a and car seat B, Fig. 6.35b and airplane seat A, Fig. 6.35c and airplane
seat B, Fig. 6.35d) analyzed in Sect. 6.3.4. One car seat system is used in the E-
Class car of DAIMLER automotive and both airplane seats are manufactured by
RECARO Aircraft Seating. The mechanical characterization of the materials
employed in both seat systems are described in detail in Sect. 4.2.2.

6.3.3 Critical Body Sites

Similar to bedding systems, critical body sites prone to mechanical tissue stress
and strain can be identified. In the seated position such regions are located in the
tissue covering the ischial tuberosity, cf. positions 3 and 3a in Fig. 6.12 in
Sect. 6.2.4.
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6.3.4 Interaction FE-Analysis Comprising Body-Seat-Systems
(BSS)

The interactive behaviour of the contact points, i.e. car or airplane seats and seated
BOSS-Models was analyzed solely based on their elastic material properties
(Sect. 6.2.5). The material parameters employed were established on the experi-
mental force–displacement data constituting the region of equilibrium elasticity
(cf. Sects. 4.2.2 and 5.2.3). The working hypothesis regarding comfort, (biome-
chanical hypothesis) described in Sect. 3.5, was that higher sitting comfort
corresponded to lower normal or direct mechanical tissue shear stress (and/or
normal or direct strain and shear strain), particularly at the ischial tuberosity.

6.3.4.1 Elastic Body-Car Seat-Systems (E-BCSS)

Increasingly, aside from safety and economy, customers are demanding additional
seat comfort. Also, it has been demonstrated that long distance driving
performance is impaired if body posture is inappropriately supported. From an
ergonomic point of view an automotive vehicle is not only a means of transport or
a consumer good but a work place as well. Certain design regulations must
therefore apply to the vehicle interior. Regulations regarding seat position design
have been developed by Helbig and Jürgens (1977) and are noted in the reference
work for standardization (DIN 33 408).

In the following, the body-car-systems subsequently listed are used in
mechanical interaction FE-analysis

Elastic Body-Car Seat-Systems (E-BCSS) 1: Car seat A and BoMo8 (male model),
Fig. 6.36a

• E-BCSS 2: Car seat A and BoMo12 (female model), Fig. 6.36b
• E-BCSS 3: Car seat B and BoMo7 (male model), Fig. 6.40a
• E-BCSS 4: Car seat B and BoMo11 (female model), Fig. 6.40b

Fig. 6.35 a Car seat A DAIMLER E-Class, b car seat B, c airplane seat A with foam core (RECARO

Aircraft) and d airplane seat B with fabric lining (RECARO Aircraft)
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The material property evaluation of the car seat systems A and B, cf. Fig. 6.35,
are described in Sect. 4.2.2.1 and the employed human body models BoMo7,
BoMo8, BoMo11 and BoMo12 are defined and characterized in Sect. 5.3.5.

E-BCSS 1 and E-BCSS 2: Figure 6.36 depicts the investigated FE-interaction
models with a male (E-BCSS 1) and a female (E-BCSS 2) human model. To
compare the mechanical effects on tissue, paths that initiate at skin level and
traverse the tissue towards the bone surface of the ischial tuberosity were gener-
ated. Tissue direct and shear stress and strain at the nodes were evaluated here. The
node path of maximum direct stress Sii (i = 1, 2, 3) ended at the bone surface
where maximum vertical (in direction of gravity loading) stress S33 occurs.
Accordingly, the shear stress Sij (i, j = 1, 2, 3, i = j) paths end at the point of
maximum shear stress S23, Fig. 6.36 bottom.

Figures 6.37 and 6.38 show the distribution of normal stress S33 (cf. coordinate
system Fig. 6.36) and von Mises equivalent stress in the sagital plane at the ischial
tuberosity for models E-BCSS 1 and E-BCSS 2. The tissue stress underneath the
ischium is more intense for the male model than for the female model and the
upper legs of the female model exhibit higher loading. This is mainly due to
different body mass and dissimilar anatomy.

Fig. 6.36 FE-models with car seat A and human models a E-BCSS 1 and b E-BCSS 2 at static
equilibrium and corresponding node paths below, both in section cut view
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The diagrams in Fig. 6.39 show direct and shear stress S33 and S13 along the
previously described node paths of systems E-BCSS 1 and E-BCSS 2 involving the
human body models BoMo8 and BoMo12. The curves show moderate direct and
shear stress values from the skin level to approximately 40 mm tissue depth. Towards
the bone surface stress values increase. Apart from direct stress S22 in the lateral
direction, which when comparing both models experiences a sign change, the direct
stress S33 dominates. The highest shear stress, S23 (male model) and S12 (female
model), which is the same magnitude as the direct stress, occurs at the ischium.

E-BCSS 3 and E-BCSS 4: Figure 6.40 shows FE-interaction models, with a
male (E-BCSS 3) and a female (E-BCSS 4) human model. The corresponding node
paths for direct and shear stress from the skin to the ischial bone surface are
shown. Node paths are chosen such that both paths end at the point of maximum
direct stress S33 at the ischium.

Fig. 6.37 Simulation of the S33 tissue stress distribution for a E-BCSS 1 and b E-BCSS 2 model
in the sagital plane of the ischial region (section cut view)

Fig. 6.38 Simulation of von Mises equivalent tissue stress distribution for a E-BCSS 1 and
b E-BCSS 2 model in the sagital plane of the ischial region (section cut view)

278 6 Mechanical Interactions



Figures 6.41 and 6.42 illustrate the direct stress S33 distribution and the von
Mises equivalent stress distribution at the ischial region of systems E-BCSS 3 and
E-BCSS 4. The internal tissue stress is qualitatively similar for the male and
female models. This is affirmed by the diagrams in Fig. 6.43 which depict stress
values along defined node paths (see Fig. 6.40). Again, an increase in tissue stress
can be observed near the ischial bone surface as well as the same order of
magnitude of direct and shear stress.

6.3.4.2 Elastic Body-Airplane Seat-System (E-BASS)

The body-airplane-seat-systems subsequently listed are employed in the
mechanical interaction FE-analysis:

• E-BASS 1: Airplane seat B and BoMo7 (male model), Fig. 6.44a
• E-BASS 2: Airplane seat A and BoMo11 (female model), Fig. 6.44b

Airplane seat A is composed of a foam core with a fire blocking coating and
leather cover, Fig. 6.35c, and airplane seat B is composed of a fabric lining with
leather cover attached to an aluminium frame, Fig. 6.35d. The material property

Fig. 6.39 a Tissue direct stress S33 and b shear stress S13 along the defined node paths (see
Fig. 6.36) initiating at skin level (0 mm) and leading to the bone surface (ischium) for E-BCSS 1
(top) and E-BCSS 2 (bottom)
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evaluation of the airplane seat systems A and B are described in Sect. 4.2.2.2. The
employed human body models BoMo7 and BoMo11 are defined and characterized
in Sect. 5.3.5. Mechanical interaction simulation is conducted for the primary seat
positions: upright and reclined, cf. Fig. 6.44c and d.

Fig. 6.40 FE-models with car seat B and human models a E-BCSS 3 and b E-BCSS 4 at static
equilibrium and corresponding node paths below, both in section cut view

Fig. 6.41 Simulation of the S33 tissue stress distribution for a E-BCSS 3 and b E-BCSS 4 model
in the sagital plane of the ischial region (section cut view)
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In Fig. 6.45 the paths are defined where stress is evaluated. Path 1 initiates at
skin level and traverses the fat layer and the muscle layer to the ischial bone
surface. Path 2 leads from skin level at the bottom side of the upper leg towards the
femoral bone surface.

E-BASS 1 (male model): In Fig. 6.46 the direct S33 and shear stress S13

distributions in the femur tissue are compared for the upright and the reclined seat
positions using the E-BASS 1 system. The tissue direct stress in the reclined

Fig. 6.42 Simulation of von MISES equivalent tissue stress distribution for a E-BCSS 3 and b E-
BCSS 4 model in the sagital plane of the ischial region (section cut view)

Fig. 6.43 a Tissue direct stress S33 and b shear stress S13 along the defined node paths (see
Fig. 6.40) initiating at skin level (0 mm) and leading to the bone surface (ischium) for E-BCSS 3
(top) and E-BCSS 4 (bottom); shading indicates skin/fat tissue depth at the investigated body sites
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Fig. 6.44 Body-airplane seat-systems: a E-BASS 1 and b E-BASS 2 and body posture in
c upright position and d in reclined position

Fig. 6.45 a Node path 1 at the ischium in sagital cut view and b in transversal cut view and
c node path 2 at the upper leg

Fig. 6.46 a and b: tissue direct S33 and c and d shear stress S13 for upright position (a, c) and
reclined position (b, d) employing system E-BASS 1 (section cut view); coordinate system and
colour scheme in legend applies to all plots
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position exceeds the direct stress in upright position by one order of magnitude,
due to increased loading of the front part of the femur. Shear stress, in contrast,
is higher in the upright position. In the reclined position, a sign change of tissue
shear stress can be observed at the front seat edge.

Figure 6.47 depicts the seat pressure distribution due to gravity body loading at
static equilibrium. In the upright position maximum interface direct stress S33 is
located at the ischium, whereas in the reclined position the interface direct stress
increase also occurs at the front seat edge.

In Fig. 6.48, tissue direct stress S33 along path 1 and shear stress S13 along path
2 (see Fig. 6.45) are compared for the upright and the reclined position. It can be
seen that tissue direct stress for both seat configurations is relatively low and
nearly constant up to a tissue depth of 60 mm and strongly increases towards the
ischial bone surface. S33 values at the bone surface were increased by 30 % in the
upright back rest position compared to the reclined position, cf. Fig. 6.48a. Shear

Fig. 6.47 Comparison of seat pressure distribution using vertical direct stress component S33 of
airplane seat B in a upright and b reclined position; for coordinate system orientation see Fig. 6.46

Fig. 6.48 a Direct stress S33 along node path 1 (see Fig. 6.45) and b shear stress S13 along node
path 2 (see Fig. 6.45) for upright and reclined back rest position using system E-BASS 1
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stress S13 in the reclined position is multiplied compared to the upright position at
skin level of bottom skin position of the upper leg, cf. Fig. 6.48b.

Fig. 6.49 a and b: tissue direct S33 and c and d shear stress S13 for upright position (a, c) and
reclined position (b, d) employing system E-BASS 2 (section cut view); coordinate system and
colour scheme in legend applies to all plots

Fig. 6.50 a Direct stress S33 along node path 1 and b shear stress S13 along node path 1 (see
Fig. 6.45) for upright and reclined back rest position using system E-BASS 2
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E-BASS 2 (female model): In Fig. 6.49 direct stress S33 and shear stress S13

distributions in the ischial region are compared for the upright and the reclined
seat positions using the E-BASS 2 system. Figure 6.50 depicts stress values along
node paths 1 (see Fig. 6.45) for both back rest positions. It shows that direct and
shear stress are of nearly the same magnitude whereby stress in the reclined
position generally tends to be increased. Maximum direct stress is approximately
8-fold higher, compared to shear stress.

6.4 FE-Simulation Versus Experiments

To validate finite element simulation results of mechanical tissue interaction
shown in Sects. 6.2 and 6.3, they are compared to results from animal and human
experiments conducted from 1959 to 1994, listed in the literature. These findings
were discussed in Sect. 3.5 (cf. Fig. 3.36b) where the respective (constant) animal
tissue loading (pressure) was plotted over critical loading time (i.e. time of
constant pressure) where cell damage was observed (experimental pressure–time
damage relations).

From a mechanical point of view, the experiments described previously
represent creep loading (cf. Sect. 3.2.2.2). In contrast to a time rate of deformation
of loaded tissue, the time to cell damage and necrosis is considered.

To compare finite element simulation results with experimental findings, the
simulated mechanical tissue stress was evaluated at the skin surface and at the
bone, based on interaction simulation and viscoelastic tissue material behaviour.

Due to a constant body weight of the BOSS-Models, a creep process can be
assumed during tissue interaction in the seated or recumbent posture.

In Figs. 3.36b and 6.51 or 6.52 all investigations except those of Reswick and
Rogers (1976), involve experimental animal data. Only Reswick and Rogers
established a time–pressure relationship with human data. They, however, empha-
sized that their data came from an observational study investigating the skin interface
pressure of 980 seated individuals. Their data is almost exclusively based on expe-
rience, rather than on controlled measurements. All experimental curves, presented
below, indicate threshold pressure–time relations where pressure–time values on and
above the individual pressure–time curve were shown to cause tissue damage.

A direct comparison of simulated tissue stress curves with experimental values
is only approximate for several reasons. First, experimental findings involve
different approaches regarding pressure derivation as well as different animal
species and different body sites. This experimental nonconformity may have led to
the deviation in the experimental curves. Secondly, and of particular significance,
simulated tissue stress represents a single loading incident over a certain time span.
The experimental curves, in contrast, represent various loading experiments at
constant pressure assigned to the particular times when cell damage occurs.

The ambiguous situation of experimental findings is reminiscent of similar
findings from clinical health care reports. Pressure sores have been reported to
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develop within minutes to hours. Such discrepancy may be due to varying support
surfaces (employed in different clinical health care institutions), which have
different effects on the tissue depending on subject height and weight, as indicated
by Shelton and Flott (2003).

Figure 6.51 shows simulation results of mechanical tissue-support interaction
between a recumbent (Fig. 6.51/[D]) and a seated (Fig. 6.51/[B]) model on a
viscoelastic foam support (thickness: 80 mm) generated by Then and Silber and a
pressure–time cell damage relation (Fig. 6.51/[7]) given by Linder-Ganz et al.
(2006) (cf. outlines in Sect. 3.5.2). The simulated skin level (compressive direct)
stress (Fig. 6.51/[D]) at the ischial tuberosity agrees well with experimental
findings (Fig. 6.51/[7]). Simulated (compressive direct) stress values of the human
fat–muscle interface at the ischial tuberosity, however, are located above the
pressure–time cell damage relation, (in gravitation and vertical loading direction,
the sign has been changed to fit the diagram).

In Fig. 6.52 and in addition to the curves depicted in Fig. 6.51, all significant
findings regarding pressure–time cell damage provided in the literature from 1959
to 1994 as well as simulated stress values at the human bone surface (Fig. 6.52/
[A]) and at the skin level (Fig. 6.52/[C]), both at the ischial tuberosity region
(generated by Then and Silber) are depicted.

Despite the discrepancies in threshold pressure, Fig. 6.52 shows that simulated
direct stress at skin level (Fig. 6.52/[C] and [D]) agree with the stress range
reported in other investigations. All experimental stress refers to pressure as skin
interface pressure. Linder-Ganz et al. (2006), in addition, used a combined
numerical–experimental approach to determine compressive stress in deeper
muscle tissue regions for long-term pressure exposure. These authors combined
their data on cell death with other experimental data. Data derived by Kosiak
(1961) was especially useful to establish their sigmoid-type pressure relation.

The same order of magnitude between simulation results (Fig. 6.52/[C], [D]) and
experimental data is not self-evident. The simulated models reflect factors such as the
quality of viscoelastic human skin/fat and muscle tissue properties derived by
material parameter optimization (cf. Sect. 5.2), as well as support material

Fig. 6.51 Comparison of
simulated tissue direct stress
with experimental literature
data, [7] experimental:
Linder-Ganz (2006––
experimental/numerical––in
rat muscle), [D] simulation:
human supine (skin level),
[B] simulation: human seated
(fat–muscle interface)
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properties, as derived in Sect. 4.2. In addition, several modeling assumptions (e.g.
node-to-node modeling at the fat–muscle and at the muscle–bone interface, tissue
homogeneity, body mass distribution) strongly contribute to tissue stress results.

Simulated tissue stress at the human fat–muscle interface or at the bone level
(Fig. 6.52/[A] and [B]), however, exceeds that obtained by experimental investi-
gation by more than one order of magnitude! Thus, the use of the above experimental
curves as reference values for pressure sore prevention involving human subjects
becomes questionable (the simulated results indicate that experiments at skin level
are not sufficient, since internal tissue stress apparently drastically increases).

It remains unclear from the above experimental investigations whether cell
death is primarily caused by compressive stress or by shear stress. In most cases,
the location of necrotic tissue, underneath the indenter or lateral to the indenter
edges, where excessive shear deformation occurs, was not specified.

Conclusion: If the empirical pressure–time cell damage relations derived in
animal and human, shown in Fig. 6.52 (Fig. 6.52/[3] or [7]), are used as a criterion
to evaluate body support systems, the simulated skin level tissue stress values
(Fig. 6.52/[C] and [D]) are admissible (even if [C] is simulated with respect to a
3 h time span). The simulated stress values at the fat–muscle interface (Fig. 6.52/
[A] and [B]), however, are not!

Fig. 6.52 Comparison of simulated tissue direct stress involving an 80 mm soft foam support
with experimental data from other investigations
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Chapter 7
Optimization Potential of the Method

Abstract Based on the BOSS-Procedure (Chap. 2), an approach towards biome-
chanical shape optimization of body support devices prior to the manufacturing
process is presented. A ‘manual’ approach is demonstrated using various types of
bedding (Sect. 7.1) and an ‘automated’ approach, based on an optimization algo-
rithm is demonstrated using the example of a soft foam cushion (Sect. 7.2). Bedding
system simulation results are compared with pressure measurements based on a
pressure mapping device. The ‘automated’ approach comprising a shape optimi-
zation algorithm as illustrated in Sect. 7.2 is employed for commercial automotive
seating devices together with a female and a male BOSS-Model (Sect. 7.3).

7.1 Biomechanically Optimized Bedding System

The goal was to develop a novel bedding system providing optimal sleeping
comfort based on the principles of pressure and back pressure. Each relevant body
part (head, spine, buttocks and legs) was intended to be optimally supported in any
body position. The bedding, employing the pressure-back-pressure principle, was
designed to provide a micro-stimulating massage effect. The massage effect was to
be initiated by body and breathing movements during all sleep phases to provide
healthy, relaxing sleep.

7.1.1 Bedding System Designs

7.1.1.1 Basic System and FE-Modelling

The initial bedding system design illustrated in Fig. 7.1 [referred to as ‘base
system’ (BS)] consists of cross beams with T-sections, guiding for every T-beam,
an air-filled membrane (air mattress) and an enclosing soft foam cover. To attain

G. Silber and C. Then, Preventive Biomechanics,
DOI: 10.1007/978-3-642-29003-9_7, � Springer-Verlag Berlin Heidelberg 2013

289



shorter simulation times, the model of the bedding system—just like the human
body model (BOSS-Model)—was generated as a half model. Furthermore, existing
curvatures at the T-section heads and the foam cover were modelled as right-angles
to achieve less elements and larger element edges (due to time-step considerations
in explicit integration). The foam cover at the sides and on the floor of the T-section
guiding were neglected since they do not provide any supporting function. The
foam filling between the T-sections was also neglected to avoid additional resis-
tance of foam and T-beams, which would also not contribute to system judgement.
The exterior T-beams were not modelled (they do not contribute to body support) to
further simplify the system. Under the assumption of insignificant deformations
compared to the soft foam and human tissue materials, the T-beams and their
guiding have been modelled as rigid material. Modelling of the air-mattress and the
air-filling was done using membrane and fluid elements, cf. Fig. 7.1.

7.1.1.2 Model Variations of the Base System

To compare the effects of different systems on tissue, two alternative bedding
systems were generated: a three chamber system (3CS) and a profiled system (PS),
Fig. 7.2. In contrast to the base system, the three chamber system consisted of
three unconnected identical chambers in which the air fillings did not ‘‘commu-
nicate’’, Fig. 7.2a. The profiled system had wider T-section heads and additional
notches between the single T-sections and the foam material, Fig. 7.2b.

7.1.1.3 Data for Membrane and Foam Material

The material parameters for the membrane material were derived via cyclic
(tensile) loading and unloading experiments with holding periods (1 h), following
the procedure outlined in Sect. 4.2.1.2. Material samples with the dimensions
100 9 20 mm2 were employed. Figure 7.3a depicts the force-displacement data
obtained through tensile testing and the simulated model curve based on the OGDEN

model (3.272). The parameters employed for the air filling of the mattress were
adopted from the literature (ambient pressure: 1.01325 bar, density: 1.2 kg/m3).

Fig. 7.1 FE-Model of the base system
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Similarily, soft material characterization was performed employing uniaxial
plate-compression testing, cf. Sect. 4.2.1.2. Via material parameter optimization,
the parameters of the reference material ‘‘RD59’’ and five additional parameter
sets derived from factorization (referred to as F5, F2, F0.75, F0.5 and F0.25) of the
experimental reference values were establisehd, Fig. 7.4. The force-displacement
data of the material F0.5 for example, was generated by multiplying the ‘‘RD59’’-

Fig. 7.2 System variations: a 3-chamber-system (3CS) and b profiled system (PS)

Fig. 7.3 Experimental force-
displacement data (hatched
line) of a the membrane
material and b the soft-foam
reference material ‘‘RD59’’
and the simulated data based
on steady state parameters
(continous line) (force-
displacement scales have
been removed due to
confidentiality)

7.1 Biomechanically Optimized Bedding System 291

http://dx.doi.org/10.1007/978-3-642-29003-9_4


data curve by 0.5. The corresponding material parameters were derived by curve-
fitting based on the generated force-displacement curves, cf. Fig. 7.4.

All virtually generated (factorized) soft foam material data were used in the inter-
action simulations as follows. By comparing the different foam materials and bedding
systems, the optimal combination to minimize tissue stress and strain was sought.

7.1.2 FE-Modelling of Human Body Models

The female human body model BoMo2 and the male model BoMo4 (see Sect.
5.3.4) were used in the numerical analysis. Both models were modified with
respect to particular percentile adjustments as described in the following.

7.1.2.1 Weight and Mass Distribution

Static loading of the support system results from gravity and the mass of the par-
ticular body model. Additional masses were assigned to the bone structure to meet a
specified total mass. The employed mass distribution can be found in, Table 7.1.

Table 7.1 Body mass distribution in percent

Relative weight (%) Fischer Hochmuth Bernstein Standard

Men Women

Head 7.06 8.1 6.72 8.12 7
Trunk 42.70 49.1 46.30 43.90 43
Upper arm 3.36 2.8 2.65 2.60 3
Forearm 2.28 1.6 1.82 1.82 2
Hand 0.84 0.6 0.70 0.55 1
Thigh 11.58 9.9 12.21 12.89 12
Shank 5.27 4.0 4.65 4.34 5
Foot 1.79 1.4 1.46 1.29 2

Fig. 7.4 Force-displacement data of the reference foam ‘‘RD59’’ (factor 1.0) and the factorized
force-displacement curves (force-displacement scales have been removed due to confidentiality)
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7.1.2.2 Body Geometry (Percentile)

The body regions of both recumbent body models, in particular the mass, height,
shoulder and hip width, have been modelled according to DIN 33402-2:2005-12,
cf. Table 7.1, 7.2, 7.3, 7.4, 7.5. The column ‘‘normal’’ in Table 7.1 contains

Table 7.2 Body mass (DEUTSCHES INSTITUT FÜR NORMUNG E.V. 2006)

Age group years Body mass (weight) kg

Men Women

Percentile

5 50 95 5 50 95

18–65 63.5 79.0 100.0 52.0 66.0 87.0
18–25 59.5 72.5 95.0 49.0 60.0 78.5
26–40 63.5 78.5 101.0 50.5 63.5 86.5
41–60 65.0 82.0 102.5 54.0 69.5 90.5
61–65 64.0 81.0 97.5 54.5 70.5 89.0

Table 7.3 Body heights (DEUTSCHES INSTITUT FÜR NORMUNG E.V. 2006)
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common literature mean values. The sum of all percent values leads to total body
weight (100 %) with double weight for arm and leg.

The body model BoMo4 represents the body height ‘‘medium’’ according to DIN
33402-2:2005-12 where in this case, 50 % of all measured values are above or below
this median. To cover a greater age range with this model, the age group between 18
and 65 years was chosen. According to DIN regulations, the body mass of a medium,
18–65 year old male is 79 kg with a body height of 1,750 mm, cf., Tables 7.2 and
7.3. The shoulder width related to age and gender is listed in Table 7.4. Here, the
straight distance between the most prominent shoulder points in the pulled-back
position is measured (Deutsches Institut für Normung 2006). Table 7.4 in shows the
hip width defined by the maximal horizontal distance of the outer hip edge related to
age and gender, measured with a beam-compass in the upright body position (De-
utsches Institut für Normung 2006). The body height, related to age and gender, is
shown in, Table 7.3 and is measured upright with the feet together from the ground to
the highest point of the head. The head is positioned according to the ‘‘Frankfurt
Horizontal’’as outlined in (Deutsches Institut für Normung 2006).

Table 7.4 Shoulder width (DEUTSCHES INSTITUT FÜR NORMUNG E.V. 2006)
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7.1.2.3 Variations of the Human Body Models

To cover a broad range of body weights, six body models were generated
according to regulation DIN 33402-2:2005-12, Table 7.6. The percentile 5 rep-
resents the size ‘‘small’’, where 5 % of the values are below that limit, percentile
50 represents the size ‘‘medium’’, where 50 % of the values are found above or

Table 7.5 Hip width (DEUTSCHES INSTITUT FÜR NORMUNG E.V. 2006)

Table 7.6 Information on
human model variations

Percentile (%) Age (y) Weight (kg)

5 18–25 59.5
5 18–65 63.5
50 18–25 72.5
50 18–65 79.0
95 18–65 100.0
95 41–60 102.5
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below that median and percentile 95 represents the size ‘‘large’’, where 5 % of the
values are above that limit (Deutsches Institut für Normung 2006).

7.1.3 Selection of Appropriate Bedding Systems

7.1.3.1 Variation of the Membrane Inside Pressure

Body-support interaction simulations comprising the systems BS, PS and 3CS with
different foam materials (F0.5; F0.25; F0.75) at varying internal pressure (over
pressure) in the range of 2.8 and 3.5 mbar are presented. Figure 7.5 exemplarily
depicts the three systems with BoMo4 at steady state.

7.1.3.2 Mechanical Stress Analysis

To quantitatively compare mechanical (internal) tissue stress of the interaction
scenarios depicted in Fig. 7.5, two paths (via nodes) where stress was evaluated
were defined. Path 1 begins at skin level and progresses through the tissue to the

Fig. 7.5 Interaction of the three bedding systems BS (top), PS (center) and 3CS (bottom) with
the body model BoMo4
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region of maximum shear stress S23 at the tailbone, ending at the coccyx, Fig. 7.6a.
Path 2 begins at skin level and progresses through the tissue to the region of
maximum normal stress S33 at the tailbone, Fig. 7.6b. The stress components were
chosen based on the fact that both S23 and S33 (pointing in gravitational direction),
were at least one order of magnitude larger than other normal and shear stress
components.

In Fig. 7.7 the tissue stress component S33 is shown along both paths with
factorized foam material F0.25 at varying membrane pressure. In Fig. 7.8 the
tissue stress component S23 is shown along path 1 for materials F0.25 and F0.5 at
varying membrane pressure. Along path 1 maximum stress (S33) occurred at the
fat/muscle interface (pressure stress) and at the tailbone (tensile stress). Further-
more, S33 increases with increasing air mattress internal pressure.

Stress path 2 reflects moderate S33-values at skin level, and increasing stress
towards the (tail) bone surface. Shear stress S23 was maximum at the fat/bone
interface and decreased towards the path end. Similar to normal stress, S23

increased with increasing air mattress internal pressure. Stress maxima occurred
for both stress components at the fat/bone interface. These stress characteristics
were apparent with all the previously introduced (factorized) foam materials.

Analysis shows that an air mattress internal pressure of 2.8 mbar represents a
minimum mattress pressure value where the T-section bars deeply intrude into the
membrane surface. Membrane material failure is thus likely to occur.

The simulations involving bedding system PS showed unrealistically large
deformation in the upper profiled region, which would likely lead to material
failure. Hence, not all possible material combinations were simulated, only those
with realistic outcome.

Fig. 7.6 a Stress path 1 and
b stress path 2 indicated by
yellow dots
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7.1.3.3 Pre-Selection of Appropriate Bedding System Variations

Based on the simulated mechanical tissue stress in the buttock regions of BoMo 2
and BoMo 4, the three systems LS1–LS3 listed in Table 7.7 were shown to be
superior in minimizing normal stress S33 and shear stress S23 in fat and muscle
tissue. Figures 7.9 and 7.10 depict tissue path stress of these system variations.

The final selection of an ideal bedding system was restricted to the three
previously selected systems.

Fig. 7.7 Comparison of normal stress S33 along a node path 1 (see Fig. 7.6) and b node path 2
for system BS with factorized foam material F0.25

Fig. 7.8 Comparison of shear stress S23 along node path 1 (see Fig. 7.6) for system BS with
factorized foam material a F0.25 and b F0.5

Table 7.7 Ideal bedding
systems with low tissue stress
(pre-selection)

System
variation

Bedding
system

Foam
material

Membrane
pressure (mbar)

LS1 BS F0.25 2.8
LS2 BS F0.5 2.8
LS3 3CS F0.5 3.0
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7.1.3.4 Deformation Analysis and Additional Selection Criteria

Variation LS1 caused a large deformation of the mattress foam material at the
tailbone region, thus creating a critical zone between the buttocks and T-beams, cf.
Fig. 7.11 (top), thereby excluding this system as a favorable candidate. The three
chamber system LS3 in contrast, caused large curvatures of the mattress
membrane between some T-beams [Fig. 7.11 (bottom)] making membrane
material failure likely to occur, thus excluding this particular variation as an ideal
bedding system. The system LS2 represents the most promising model to be
further optimized, since the disadvantages of the other two systems are not present.

7.1.3.5 Comparison with Two Reference Systems

The system LS2 was compared with two commonly employed bedding systems to
judge the effects on tissue. Reference system (a) was a plain soft foam mattress and
system (b) was the Thevo Vital-system (TV), from THOMASHILFEN GmbH.
Figures 7.12 and 7.13 depict tissue mechanical normal stress component S33 along
node paths 1 and 2 (see Fig. 7.6) and shear stress component S23 along path 1.
Both stress components were significantly lower in system LS2. The foam mattress
showed high tissue normal stress along path 2 towards the bone surface.

Fig. 7.9 Comparison of tissue normal stress S33 along a node path 1 and b node path 2 (see
Fig. 7.6) for the selected systems LS1 to LS3

Fig. 7.10 Comparison of
tissue shear stress S23 along
node path 1 (see Fig. 7.6) for
the selected systems LS1 to
LS3
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7.1.4 Ideal Bedding System

7.1.4.1 Correlation Between Membrane Pressure and Body Weight

Since increasing membrane pressure results in increasing tissue stress, adjustment
between body weight and membrane pressure is required. To effectively compare
tissue-support interaction, the definition of a deformation condition is necessary.
Such a condition is comprised from the minimum distance between the upper and
lower membrane surfaces and maintaining this distance constant during interac-
tion, cf. Fig. 7.14a. These restrictions lead to a relation of membrane pressure and
body mass as shown in Fig. 7.14b.

Fig. 7.11 Interaction of BoMo 4 with system LS1 (top) and system LS3 (bottom). Red circles
indicate regions of possible material failure

Fig. 7.12 Comparison of normal stress component S33 along a node path 1 and b node path 2
(see Fig. 7.6) for system LS2, TV and the foam mattress
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Fig. 7.13 a Comparison of
shear stress component S23

along node path 1 (see
Fig. 7.6) for system LS2, TV
and the foam mattress,
b interaction of body model
BoMo 4 with the TV-system

Fig. 7.14 a Interaction of
various body masses with
constant deformation
measure (deformation
condition) of the loaded
membrane, b functional
relation of membrane
pressure and body mass
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7.1.4.2 Optimization of the Mattress Height

The interaction simulations comprising the percentile body models presented in
Table 7.6 and the bedding system LS2 showed that an initially assumed mattress
height of 60 mm is not sufficient when considering a larger body mass. The 95th
percentile model (41–60 years, 102.5 kg) for example, caused high foam material
deformation and critical buttock (internal) tissue stress, cf. Fig. 7.15b.

Increasing the foam mattress height to 100 mm led to a significant decrease in
tissue stress S33 together with a load relief of the mattress foam, cf. Fig. 7.15b
(bottom). In Fig. 7.15a, the normal stress along path 2 (see Fig. 7.6) of all per-
centile models listed in Table 7.6 were compared for mattress heights of 60 and
100 mm (mass of arms included). Results show significant lower tissue stress at
100 mm mattress height. Including the arm mass resulted in increased membrane
pressure which required a change of initial membrane inside pressure from 2.8 to
3.5 mbar for system LS2.

7.1.5 Optimized Bedding System: Human Models
in Lateral Posture

In the following, the system LS2 which has been optimized based on the human
body models BoMo2 and BoMo4 in recumbent posture (lying on back), is verified
for body loading in the lateral posture (lying on side). In this context, the generation

Fig. 7.15 a Tissue normal
stress S33 along node path 2
(see Fig. 7.6) for all
percentile models at 60 mm
mattress height (red lines)
and 100 mm (black lines),
b comparison of interaction
of system LS2 and BoMo 4
(95th percentile, 41–61 years,
102.5 kg) at a mattress
thickness of 60 mm (top) and
100 mm (bottom)
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of human body models is based on the body depth according to Table 7.8 in which
is the distance between front and back side of the torso measured in an upright body
position with the heels, buttocks and back (especially the shoulder region) in
contact with a straight wall (Deutsches Institut für Normung e.V. 2006).

7.1.5.1 Deformation Analysis of the Spine

Based on the findings outlined previously, interaction simulations were carried out
with the body models in the lateral posture and the bedding system LS2 employing
the factorized foam materials F0.25, F0.5 and F0.75 with varying membrane
pressure. To evaluate comfort, the deformation of the spine at static equilibrium was
analyzed. It was assumed that the ideal spine geometry is horizontal (parallel to the
undeformed mattress surface), representing the undeformed and unloaded state.
Figure 7.16 qualitatively illustrates the interaction of body and bedding system.

Table 7.8 Body depth (Deutsches Institut für Normung E.V.)
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Due to the different foam material characteristics, body displacement at static
state also differs. A comparison of total displacement is thus not meaningful,
cf. Fig. 7.17a. To compare spine deformation, the displacement was normalized by
the displacement of the vertebrae 5, cf. Fig. 7.16, allowing direct comparison,
Fig. 7.17b. Figure 7.17a and b show the spine deformation in true scale (top), with
and without a common reference point (bottom). A slight deviation of the spine
from the ideal (horizontal) state is apparent. However, the influence of membrane
pressure and foam material is negligible.

Fig. 7.16 Body model
BoMo 4 in lateral posture:
initial state at zero contact
(top) and during interaction
with system LS2 (bottom)

Fig. 7.17 True scale
deformation of the spine
(a and b, top) and spine
deformation (a and b, bottom)
a with and b without common
reference point
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7.1.5.2 Stress Analysis

Tissue stress analysis in lateral body posture is based on two additional node paths,
path 3 and path 4. Both paths originate at the bone surface of the trochanter major
at the point of maximum normal stress (path 3) and maximum shear stress (path 4)
and proceed towards the muscle tissue to skin level, Fig. 7.18.

Figure 7.19a depicts normal stress S33 along node path 3 of all the inves-
tigated bedding systems (LS2 with varying membrane pressure and foam
mattress material). Figure 7.19b depicts the bedding systems which caused
lowest tissue stress. In the same manner, Fig. 7.20 show shear stress along node
path 4.

From Figs. 7.19 and 7.29 it can be concluded that the system variations LS2/
F0.5 and LS2/F0.75 at a membrane pressure of 3 mbar minimize tissue normal
and shear stress. The system combination LS2/F0.5 at 3 mbar membrane
pressure thus represents the ideal system in the recumbent as well as in the
lateral body posture.

Fig. 7.18 a Path 3 and
b path 4 indicated by yellow
markers
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7.1.6 Result Transfer for Prototype Generation

7.1.6.1 Soft Foam Material

The factorized soft foam material F0.5 has therefore been shown to be the ideal
material to minimize internal tissue normal and shear stress. This material does not
physically exist. A comparison with physically existing foam materials shows that
the theoretical material characteristic is in good agreement with soft foam material
SAF 6060, a trademark of FOAMPARTNER FRITZ NAUER AG, Switzerland,
cf. Fig. 7.21: curves in black and brown.

In spite of deviations of both stress–strain characteristics of mattress foam
materials F0.5 and SAF6060, resulting effects on the tissue in terms of normal and
shear stress along node path 1 are identical, cf. Fig. 7.21b. This leads to
replacement of the theoretical foam model F0.5 used in simulations with the
physically existing SAF6060 material for a prototype. However, since SAF6060
material exhibits strong viscoelastic features, two similar, with respect to static
equilibrium characteristics, but more highly resilient foam materials were
considered: EVOPOREHRC 150P and HME 7, both trademarks of FOAMPARTNER

FRITZ NAUER AG, Switzerland. The force-displacement characteristics of the latter
foams are located in the region of larger displacement (approx [7.5 mm) between
the reference foam F1 and the factorized material F0.75, cf. Fig. 7.22.

Fig. 7.19 Tissue normal
stress S33 along node path 3
(see Fig. 7.18): a all
investigated bedding systems
and b systems with lowest
tissue stress
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7.1.6.2 Membrane Material (Air Mattress)

Numerical analysis has shown that changing the mattress height from 55 mm
(as used in the simulations previously described) to 100 mm has no effect on tissue
stress distribution. A commercially available mattress type with 100 mm height
can thus be used for prototyping.

7.1.6.3 Final Prototype Design

To properly house electrical instrumentation and pump equipment for membrane
air pressure generation, some T-bars including guides were moved 63 mm towards
the head side, cf. Fig. 7.23. Furthermore, the mattress support was modified to
allow for simple assembly of a prismatic soft foam mattress with the dimensions:
L 9 W 9 H = 2,000 9 900 9 100 mm.

Fig. 7.20 Tissue shear stress
S23 along node path 4 (see
Fig. 7.18): a all investigated
bedding systems and
b systems with lowest tissue
stress
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7.1.7 Validation: Comparison of Measurement and Simulation

7.1.7.1 Test Conditions

To validate the numerical results, physical measurements were conducted at the
St. Wolfgang Clinic in Bad Griesbach (supervision by Dr. med. T. Laser). The key
aspect of this study on volunteers was contact pressure measurement with pressure
mapping mats based on the LS2-prototype system and the following three mattress
materials: SAF6060, EVOPOREHRC 150P and HME7. Two of the volunteers were
the female and male subjects on which the anatomical and mechanical tissue data
of the human models BoMo2 and BoMo4 are based.

Fig. 7.21 a Comparison of
stress–strain curve based on
curve characteristics depicted
in Fig. 7.4 and the SAF6060
material and b comparison of
tissue normal and shear stress
for foam F0.5 and SAF6060
along node path 1 (force-
displacement scales have
been removed due to
confidentiality)

Fig. 7.22 Force-
displacement characteristics
of two additional soft foam
materials (force-displacement
scales have been removed
due to confidentiality)
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During testing, the minimum and maximum membrane pressure was adjusted
such that the T-bars were horizontally levelled and not contacting the guiding
mechanism. Adjustment of the membrane (over) pressure was not possible since
the resolution of the employed barometer was above 10 mbar. For pressure
mapping the INTERFACEFORCE X-SENSOR MAT (81 9 203 cm) was used including
the software package X3 MEDICAL V6.0.

7.1.7.2 Pressure Mapping Measurements Involving
Foam Material SAF6060

The pressure mapping images in Fig. 7.24 illustrate a strong influence of body
position on the maximum interface contact pressure stress. The body of the female
volunteer, Fig. 7.24a, was not centered on the mattress but positioned to the left.
This placed more load on the left T-bars, pushing the right T-bar upwards, leading
to a maximum interface contact pressure of 36.4 mmHg at a membrane internal air
pressure of 12 mbar (cf. colour grid with mean pressure values). Figure 7.24b
shows a membrane internal air pressure of 20 mbar and the volunteer was placed
on the right side, showing a contrary effect to that described previously. Inter-
estingly, almost doubling membrane internal air pressure from 12 to 20 mbar,
resulted in only a marginal increase of mean interface contact pressure,
i.e. 31.3 mmHg compared to 32.1 mmHg.

Figure 7.25 shows the contact pressure distribution for the male volunteer
with a minimum and maximum membrane pressure of 10 and 22 mbar. Again,
the body position strongly influenced the contact pressure values. In contrast to
the female volunteer, increasing the membrane internal air pressure by factor
2.2–22 mbar caused a 2 mmHg decrease of mean interface contact pressure.
This may have been caused by repositioning of the volunteer during mea-
surement (cf. the sensor numbers) and/or by the viscoelastic behaviour of the
mattress foam material. As observed for the female volunteer, doubling the
membrane internal air pressure only resulted in a marginal increase of mean
contact pressure.

Fig. 7.23 CAD-model of the final prototype
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Fig. 7.24 Contact pressure distribution of the female volunteer on the SAF6060 soft foam
mattress at a minimum membrane internal air pressure of approximately 12 mbar and b at
maximum membrane internal air pressure of approximately 20 mbar

Fig. 7.25 Contact pressure distribution of the male volunteer on the SAF6060 soft foam mattress
at a minimum membrane internal air pressure of approximately 10 mbar and b at maximum
membrane internal air pressure of approximately 22 mbar
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7.1.7.3 Pressure Mapping Measurements Involving Foam Material HME7

Figure 7.26 illustrates the pressure distribution between the female volunteer and
the bedding system LS2 employing the mattress foam material HME7. Here, care
was taken that the subject body did not change position while the membrane
internal air pressure was increased. This was achieved since the location of the
head and buttock regions of maximum contact pressure did not differ. Again, an
increase in membrane internal air pressure led to only a slight increase in maxi-
mum interface contact pressure (+1.4 %).

Figure 7.27 depicts the pressure distribution for the male volunteer at minimum
and maximum membrane internal air pressure of 10 and 22 mbar. An increase of
membrane internal air pressure by a factor of 2.2 resulted in only a slight increase
of maximum contact pressure and mean pressure, +1.2 and 3.1 %, respectively.

7.1.7.4 Pressure Mapping Measurements Involving Foam Material
EVOPOREHRC 150P

Pressure mapping of the female volunteer and the bedding system LS2, employing
the mattress foam material EVOPOREHRC 150P, at a minimum membrane internal
air pressure of 10 mbar and a maximum membrane internal air pressure of
20 mbar (22 mbar in the case of the male volunteer) showed similar results to
those previously depicted (Figs. 7.28 and 7.29).

Fig. 7.26 Pressure distribution of the female volunteer on the HME7 soft foam mattress at
a minimum membrane internal air pressure of approximately 10 mbar and b at maximum
membrane internal air pressure of approximately 20 mbar
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Fig. 7.27 Pressure distribution of the male volunteer on the HME7 soft foam mattress at
a minimum membrane internal air pressure of approximately 10 mbar and b at maximum
membrane internal air pressure of approximately 22 mbar

Fig. 7.28 Pressure distribution of female volunteer on the EVOPORE HRC 150P soft foam
mattress at a minimum membrane internal air pressure of approximately 10 mbar and b at
maximum membrane internal air pressure of approximately 20 mbar
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Figures 7.30 and 7.31 provide an overview of the results outlined previously.
The lowest interface contact pressure was found with the mattress foam material
SAF6060, followed by HME7. The highest interface contact pressure occurred with
EVOPOREHRC 150P.

7.1.7.5 Comparison of Test Results with Simulation Data

Figures 7.32 and 7.33 compare pressure mapping test data with simulation data at
a minimum membrane pressure (10 mbar) and at a maximum membrane pressure
(20 mbar). Little difference in interface pressure stress was detected with regard to

Fig. 7.29 Pressure distribution of male volunteer on the EVOPOREHRC 150P soft foam mattress
at a minimum membrane internal air pressure of approximately 10 mbar and b at maximum
membrane internal air pressure of approximately 22 mbar

Fig. 7.30 Comparison of interface contact pressure of the female volunteer and the system LS2
related to the mattress material at a 10 mbar and b 20 mbar membrane internal air pressure
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minimum and maximum membrane internal air pressure. Half model symmetry
was employed in the simulation model, and stress contour plot results were pre-
sented as a full model image by mirroring the half model values. This does
generate some difference between pressure mapping results and simulation since
the experiments cannot reproduce full symmetry as is apparent in Figs. 7.32a and
7.33a. Furthermore, sensor mats have unknown intrinsic material behaviour and
are placed between the subject and the support surface, possibly falsifying the
measured results.

Fig. 7.31 Comparison of interface contact pressure of the male volunteer and the system LS2
related to the mattress material at a 12 mbar and b 22 mbar membrane internal air pressure

Fig. 7.32 Comparison of interface contact pressure distribution of the female volunteer and the
foam material HME7 at minimum membrane pressure of 10 mbar: a test and b simulation

314 7 Optimization Potential of the Method



To show (internal) mechanical tissue stress at membrane internal air pressures of 10
and 20 mbar, the normal stress component S33 and the shear stress component S13 have
been evaluated along path 5 (tailbone to skin) and path 6 (coccyx to skin) beginning at
the point of maximum normal and shear stress, respectively, cf. Fig. 7.34.

Fig. 7.33 Comparison of interface contact pressure distribution of the female volunteer and the
foam material HME7 at maximum membrane pressure of 20 mbar: a test and b simulation

Fig. 7.34 a Node path 6 and b node path 5 indicated by yellow markers
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Figure 7.35 depicts the normal and shear stress along path 5 and path 6 based
on the interaction of BoMo2 and LS2 at minimum (10 mbar) and maximum
(20 mbar) membrane pressure. Simulated pressure at skin level indirectly
verified the measured contact pressure values since they were nearly equal in
both cases. In addition, in both cases, internal tissue stress values also match.
Doubling the membrane internal air pressure from 10 to 20 mbar shows, once
again, that the maximum shear stress at the bone only slightly increased by 7.7 %
(Fig. 7.35b).

Conclusion

In summary, reasonable agreement of measurement and simulation results could
be shown. This verifies the use of simulation tools, in particular human body
model and the Boss-Procedure in the process of design and material optimization.
The bedding system optimized with help of simulation is characterized by a net
mass of 20 kg and a mattress of 30 cm height as well as a metal-free frame support
and is intended for subjects with a body mass in the range of 50–150 kg.

Fig. 7.35 a normal stress S33

along path 5 (see Fig. 7.34)
and b shear stress S13 along
path 6, both resulting from
interaction of BoMo2 with
system LS2 at membrane
internal air pressures of 10
and 20 mbar

316 7 Optimization Potential of the Method



7.2 Shape Optimization of Seat Systems

7.2.1 Introduction

The numerical studies presented in Chap. 6 reflect the internal tissue stress and
strain situation in conjunction with support alteration. However, the approach does
not provide precise support optimization following an automated and systematic
optimization strategy. Therefore, in the present subchapter an approach towards
(internal) tissue stress reduction at critical body sites is undertaken, based on the
guidelines outlined in Sect. 3.4 ‘Parameter Identification’, specifically in Sect.
3.4.6 ‘The Inverse Problem’. The shape optimization goal can be formulated as
‘‘finding a support shape to minimize tissue stress (strain) within a defined tissue
region’’.

This approach is limited to static seat soft foam support devices, elastic
material behaviour and to the tissue region underneath the ischial tuberosity.
However, it can readily be applied to any extra-corporal technical support
device, such as mattresses, shoes, protectors etc. or tissue region, e.g. os sacrum,
heel etc. Similarly, the employed numerical procedure can readily be altered to
specifically change the structure of the (cushion) support material using a birth
and death (delete/grow element-based) method for single element regions. In this
case, the resulting topology optimization goal can be formulated as ‘‘finding a
material distribution to minimize tissue stress (strain) within a defined tissue
region’’.

Utilizing a numerical optimization algorithm, mechanical tissue stress in the
human (muscle) tissue region underneath the ischial tuberosity is exemplarily
reduced. This was done by following the procedure outlined in Fig. 3.31
‘Schematic flow-chart of a single-criteria shape parameter optimization process’
of Sect. 3.4 and using a plane strain abstraction of the continuum lower body
model in seated posture BoMo 9 as introduced in Sect. 5.3.5. Specifically, the
shape of the support surface is altered by the algorithm with respect to tissue
stress reduction.

In addition to shape optimization, using the 3-dimensional FE-model of the
subject in the seated posture, and similar to the study of (Ragan et al. 2002), the
influence of the support surface thickness on (internal) tissue stress (strain) is
evaluated without altering the surface shape. Under these conditions, different
cushion materials are compared.

7.2.2 Support Thickness Variation

To evaluate the influence of a soft foam cushion on the stress and strain distri-
bution in the gluteal region when sitting, static loading of the 3-dimensional lower
body model BoMo 9 on block-shaped cushion supports of various thicknesses
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ranging from 0 to 300 mm was simulated. A highly resilient foam material similar
to the HR-foam material introduced in Sects. 4.2.1.2 and 4.2.1.3 was used to
demonstrate the general approach.

7.2.2.1 Body-Support-System (BSS)

The FE-lower body model, Fig. 7.36, was assigned the following properties (cf.
also Sect. 5.3.5, Table 5.13):

• body mass: 56 kg (via tissue densities and added lumped masses on bone
structure)

• all DOFs of the rigid bone structure constraint, but vertical 2-direction
• tissue material parameters as derived in Sect. 5.2
• feet unsupported (the feet were modelled as unsupported since it can be

observed from simulation that the femur pitch angle (angle between femur and
horizontal seat surface due to feet ground support) significantly influences the
tissue stress magnitude underneath the ischium)

• revolute joints at hip and knee ankles, and node-to-node modelling of tissue
interfaces

The foam cushion had the dimensions H 9 W 9 D = 400 9 400 9

(0–300) mm, all DOFs of the bottom nodes were fixed. Foam material specifica-
tions were: polyether foam, density: 32 kg/m3, CFD (abbr.: compression force
deflection): 3.4 kPa, supplier: BASF, internal identifier: RD-59. The force-
displacement curve obtained from stepwise uniaxial compression testing of foam
RD-59 is given in Sect. 7.1.1.3, Fig. 7.3b. The simulated scenario for the BSS is
exemplarily demonstrated, whereby the lower body model is placed on the soft
foam cushion and gravity loading is applied, Fig. 7.36.

Fig. 7.36 Static simulation of the lower body model BoMo 9 on soft foam cushion at 40 % body
weight loading. a complete model including fat and muscle tissue and foam support, b upper leg
and gluteal muscle groups, c pelvis, femur and tibia structure
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7.2.2.2 Stress and Strain Analysis

The resulting tissue and support material deformation process at different stages
during the process of sitting down in section cut view at the ischium is depicted in
Fig. 7.37, starting from left to right at zero deformation, Fig. 7.37a, to the state of
static equilibrium, Fig. 7.37f.

As already presented in Chap. 6 ‘Mechanical Interactions’, in the seated
posture, maximum tissue direct stress occurs underneath the ischial tuberosity in
the muscle tissue, Fig. 7.38, and maximum shear stress occurs laterally to the
pelvic bone, Fig. 7.39 in the muscle tissue. These two body sites were used to
establish stress over cushion thickness relations. (Note: max. direct and shear
stress differ by one order of magnitude!).

In the contour plots shown in Figs. 7.38 and 7.39, element corner output was
averaged across component boundaries at the element nodes using a simple
averaging method. Averaged stress was used since absolute values are not
necessary to demonstrate the approach.

The above loading scenario was simulated altering the cushion thickness from 0
to 300 mm in steps of Ds = 20 mm, Fig. 7.40. In Fig. 7.40 tissue stress represents
mean values collected from the domain comprising 8 continuum elements in the
particular tissue region. In general, it can be observed from simulation that the
tissue location where stress accumulates changed with cushion thickness. With
increasing cushion thickness the location displaced laterally. At zero cushion
thickness major contact loads were induced underneath the ischium and as

Fig. 7.37 a–f Different stages of buttock loading: a no deformation, e at 40 % body weight
loading and f maximum deformation at 100 % body weight loading
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thickness increased, the lateral buttock tissue increasingly became involved in the
load-carrying process where direct stress decreased and shear stress increased. The
latter mechanism is due to increased vertical displacement of the buttock tissue in
conjunction with increasing cushion thickness, consistent with observations

Fig. 7.39 Shear stress S12: a section cut view at the ischium, b muscle tissue [as (a) with fat and
foam masked], cushion thickness: 100 mm. Note colour scheme set equal contrary to sign
convention

Fig. 7.40 Absolute direct
and shear tissue stress at the
ischium plotted against seat
cushion thickness

Fig. 7.38 Direct stress S22: a section cut view at the ischium, b muscle tissue [as (a) with fat and
foam masked], cushion thickness: 100 mm
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reported by (Ragan et al. 2002). Furthermore, it can be observed from Fig. 7.40
that for the investigated foam material RD-59, both stress quantities remain nearly
constant at a cushion thickness of approx. s = 100 mm, and direct stress has its
maximum where shear stress exhibits its lowest values. The thicker the cushion the
more body surface achieves contact, supporting and redistributing the body load,
whereby tissue loading directly underneath the ischium is lowered.

In addition, the widening contact area caused mounting involvement of the
lateral buttock tissue which was increasingly displaced in a vertical direction,
affecting tissue shear stress magnitude. When comparing different foams with
varying stiffness to judge the influence of long-term foam stiffness on tissue stress,
direct/shear stress relation becomes more complicated. In this context, long-term
stiffness of commercially employed soft foam material RD-59 was scaled by
factors of 0.25, 2.0 and 5.0 and appropriate material parameters were optimized to
obtain four different foam materials (cf. Sects. 7.1, 7.1.1.3, Fig. 7.4). Comparison
of tissue stress based on the resulting generic foam materials is shown in Fig. 7.41.

In Fig. 7.42, direct stress is plotted against shear stress values as given in
Fig. 7.41 where the cushion thickness was eliminated. Interestingly, the direct
vs. shear stress relations are nearly linear over the investigated cushion thickness
range for the reference foam material (RD-59), as well for the scaled generic
materials (excluding the initial horizontal slope of foam stiffness scaled with factor
0.25), Fig. 7.42. In addition, the gradients of the single curves are nearly equal.
This indicates that, irrespective of the particular material, the ratio of the change of
direct stress and (due to that change) the resulting change in shear stress may be
almost constant.

Fig. 7.41 Absolute direct (modulus) and shear tissue stress at the ischium subject to various
foam material stiffness (original stiffness of foam RD-59 scaled by factor 0.25, 2.0 and 5.0)
plotted against seat cushion thickness
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Generally, from a biomechanical point of view, this shows that a premature
conclusion such as ‘‘soft support material provides pressure relief (the internal
tissue stress situation)’’ is not valid. Rather, very soft foam at a lower cushion
thickness (cf. foam stiffness scaled with factor 0.25, see Fig. 7.42) is associated
with blocking effects which require consideration.

Since progression of direct and shear stress depend on each other and tend to be
inversely proportional, cushion optimization should incorporate more than one
cushion material, when considering plain block-shaped support geometry. This
could mean, for example, employing softer material at the cushion periphery to
restrict vertical tissue displacement in combination with a stiffer core inlay in the
center. Such an approach, however, requires knowledge about tissue damaging
(or comfort) effects of the particular stress and/or strain quantity to judge the
significance of the single stress/strain components.

7.2.3 Support Shape Optimization

7.2.3.1 Procedures

In addition to evaluating cushion thickness effects on tissue, the influence of the
support shape is investigated using an optimization algorithm to seek a support
shape that reduces internal tissue stress (and/or strain). In the optimization process
the guidelines outlined in Sect. 3.4 ‘Parameter Identification’, specifically Sect.
3.4.6, are followed. In contrast to Sect. 5.2 where human tissue material param-
eters have been optimized using target function values to establish the sum of

Fig. 7.42 Plot of absolute
direct stress and
corresponding shear stress
from Fig. 7.41

322 7 Optimization Potential of the Method

http://dx.doi.org/10.1007/978-3-642-29003-9_3
http://dx.doi.org/10.1007/978-3-642-29003-9_3
http://dx.doi.org/10.1007/978-3-642-29003-9_3
http://dx.doi.org/10.1007/978-3-642-29003-9_5


squared residuals, in shape optimization the model function values, stress (and/or
strains), are directly assigned the objective function values to be minimized.

As in the previous section, simulations in seated body posture are performed to
evaluate the influence of a soft foam cushion on stress distribution in the gluteal
region. However, a plane strain model comprising the transversal (as well as
sagittal) anatomy of the gluteus at the ischium, Fig. 7.43, is used in the optimi-
zation process instead of the continuum model of the lower body. The intention
behind employing a plain strain model is to reduce the simulation time of single
iteration loops. A basic requirement, however, is that simulation results obtained
under plane strain conditions agree with those obtained from the regular contin-
uum model. Comparing tissue stress and strain derived from both modelling
approaches shows that this requirement is sufficiently fulfilled when restricted to
the region beneath the ischium.

Since the object is to alter the shape of the cushion support to reduce tissue
stress in a particular tissue region, the nodes of the cushion mesh are declared as
design nodes, Fig. 7.44. Generally, to change the cushion shape, the coordinates xi

(i = 1, 2) of the design nodes are parameterized. To further reduce computational
cost, only the top layer nodes are considered in this approach and node
displacement by the optimization algorithm are limited to the vertical direction.
This limitation reduces the parameters in the optimization process to N, where
N- is equivalent to the number of top layer nodes (see the following Eq. (7.1) and
Fig. 7.44), i.e. the design nodes as depicted in Fig. 7.44. In addition, run time is
further decreased by reducing the DOFs of the model. This is done by taking
advantage of mirror symmetry introducing symmetric boundary conditions.
Optimization time is now still dependent on the coarseness of the finite element
mesh, particularly concerning the number of top layer elements of the support.

Furthermore, an important issue when assuming plane strain conditions is to
apply adequate body loads to achieve displacements equivalent to three dimen-
sions. These loads are assessed via pre-simulations.

The simulated scenario is as previously described: in static analysis the buttock
contacts the foam support under gravitational loading. Foam bottom nodes are
fixed and bone structures are restricted strictly to vertical displacement. Tissue
material is meshed with two-dimensional 6-node quadratic plane strain elements,

Fig. 7.43 Plane strain model
with initial support geometry
prior to optimization
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two-dimensional 3-node linear plane strain elements are used to model foam
material, bone structures are assumed as rigid and are modelled with 3-node
triangular facet elements. Assigned fat and muscle tissue material parameters are
as derived in Sect. 5.2.

To avoid high element distortion of the support mesh due to uncontrolled
displacement of the top layer nodes in the optimization process, restrictions were
introduced limiting the mesh gradients in the vertical direction. Thus, a smooth
‘‘connecting line’’ linking the design nodes is obtained. These restrictions limit the
difference in vertical displacement of two neighbouring nodes to a certain
magnitude, P. In the case of vertical smoothing one obtains

x2;kþ1 � x2;k �P for k ¼ 1; 2; . . .;N � 1 ð7:1Þ

where x2;k is the vertical displacement coordinate of the k-th node, N is the number
of top layer nodes and P is the maximum allowable vertical distance between two
neighbouring nodes.

The design space sets limits for node displacements in both the negative and
positive vertical directions: (1) top layer nodes are restricted from intersecting with
the buttock model mesh preventing initial penetration and contact interaction
difficulties leading to convergence problems, (2) top layer nodes are prevented from
reducing to zero volume by incorporating limits for the minimum element side
length. For simplicity, features to rearrange the coordinates of the internal nodes of
the support mesh, to retain equal mean element side lengths, have been neglected.

7.2.3.2 Optimized Support Shapes

The modified cushion support geometry obtained from the optimization process
using the plane strain model (symmetric half model) in the transversal body plane
is depicted in Fig. 7.45a. In the same manner, shape optimization was additionally
performed employing a plane strain model representing the sagital body plane with
the plane intersecting the ischial tuberosity. Modified cushion geometry obtained

Fig. 7.44 Plane strain model
with the initial support
configuration (t0 = 35 mm)
prior support shape
optimization
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in this case is depicted in Fig. 7.45b. Model regions where stress was intended to
be reduced are highlighted in green.

Each shape reduces tissue stress beneath the ischium in the particular plane
strain case. For both configurations, the optimized shapes approximate the outer
body anatomy of the buttocks and upper legs. Using minimization of shear stress
lateral to the ischial bone as optimization criteria results in a modified cushion
shape as depicted in Fig. 7.46.

This optimized solution is trivial since cushion material is laterally reduced to
prevent vertical tissue displacement and thus create shear stress. Direct stress
beneath the ischium, however, increases as the cushion center supports nearly the
entire body weight.

7.2.3.3 Comparison of Cushion Shapes

To compare the optimized transversal shape (Fig. 7.45a) with other cushion designs,
the plane strain buttocks model was simulated using block-shaped cushions of 35 and
100 mm thickness. Direct stress and mean direct stress of a finite region beneath the
ischial tuberosity were evaluated and compared, Fig. 7.47. Direct stress was reduced
by over 50 % compared to the initial cushion shape and approx. 25 % compared to the
cushion with an increased thickness of 100 mm.

The optimized support shapes as derived in the previous subsection are based
on plane strain modelling. To verify these results for the real three-dimensional
buttock anatomy the optimized two-dimensional geometries are used to generate
3D-cushion geometry. The resulting shape combines information of both
optimized contours. In the generation process, the surface of the optimized
transversal shape was extruded along the contour of the optimized sagittal shape,
Fig. 7.48a. The obtained 3D-shape, Fig. 7.48b, was meshed with three-
dimensional continuum elements.

Fig. 7.45 Optimized cushion shape contours regarding direct stress minimization underneath the
ischium of a the transversal plane strain model and b the sagittal plane strain model. Optimized
contours are highlighted in red for visualization
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The shape aims to reduce direct stress beneath the ischial tuberosity. Shear
stress information is not included and thus does not influence the derived
geometry.

To verify validity of the derived three-dimensional shape cushion loading was
simulated using the lower leg model BoMo 9 introduced in Sect. 5.3.5. The effects
on the tissue were evaluated and compared to a 3D-block-shaped cushion of
s = 140 mm thickness. Comparison of tissue stress shows that also in three
dimensions, using the optimized cushion geometry, reduction of direct stress at
skin level as well as inside fat and muscle tissue in the ischial bone region is
achieved, Fig. 7.49.

Clearly, if tissue stress is reduced at the ischial bone region, stress must increase
at some other tissue location since the total body weight is supported. In this
context an increasing contribution of the upper legs to body weight support using
the derived sagital shape can be observed, accompanied by an increase in tissue
stress in this region.

A quantitative comparison of tissue stress on the lower body model, simulated
using a block-shaped cushion and the optimized cushion shape, is shown in Fig. 7.50.
The stress distribution along a nodal path originating at skin level and progressing
through the fat and muscle tissue towards the bone was considered. Element corner
results are averaged at the selected nodes using a simple averaging method.

Fig. 7.46 Optimized cushion
shape contour to minimize
shear stress lateral to the
ischial bone of the transversal
plane strain model.
Optimized contour is
highlighted in red
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Results indicate that direct stress at the skin surface is reduced by nearly 50 %
using the optimized cushion shape. Similar results can be observed at the fat-
muscle interface as well as deeper inside the muscle tissue.

Due to these simulation results, the approach of support shape optimization using
plane strain conditions as a basis to generate a continuum support geometry,
potentially reducing tissue stress seems practicable. Clearly, in the same manner, the
continuum model can be directly employed in the shape optimization process where
node coordinates of the 3D-cushion model are parameterized. Such an approach,
however, involves increased optimization time as well as potential convergence
difficulties due to increased model as well as contact interaction complexity.

7.2.4 Design Principles

In Sect. 7.2.2, Fig. 7.37, different stages of tissue deformation are depicted during
the process of sitting down on a soft foam support. To quantify corresponding
tissue displacements, tissue thickness in the initial undeformed configuration,

Fig. 7.48 a Extrusion of the
optimized transversal shape
along the contour of the
optimized sagittal shape, and
b resulting three-dimensional
geometry

Fig. 7.47 Comparison of two different cushion shapes to the optimized transversal shape:
a block-shaped, 35 mm, b block-shaped, 100 mm, c optimized transversal shape
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Fig. 7.51a, as well as in the maximal deformed configuration at static equilibrium,
Fig. 7.51b, beneath the ischium and lateral to the pelvic bone are compared. The
difference in total displacement of the skin layer at the chosen body sites is
Duv = -22 mm vertically and Duh = 14 mm horizontally. Tissue displacement is
primarily dependent on the support material and the support geometry. Both
parameters are particularly relevant at off-center regions of the cushion support,
as can be seen in Fig. 7.51b, where, for illustration purposes, half of the deformed

Fig. 7.49 Lower body model simulated on block-shaped cushion (s = 140 mm) and on
optimized cushion geometry, a deformed cushion shapes at static equilibrium and transversal
section cuts at ischial tuberosity: tissue direct stress S22 distribution, b direct stress distribution at
the skin level and at the fat-muscle interface
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foam support geometry is shown. Lateral foam shape/stiffness controls the vertical
displacement of the lateral buttock tissue as indicated previously in conjunction
with shear stress minimization, Fig. 7.46.

Any approach towards tissue stress and strain minimization should thus aim to
control tissue displacement. Such control includes tissue displacement relative to
bone structures as well as displacement of fat tissue relative to adjacent muscle
tissue.

To acquire an additional impression of existing gluteal tissue displacement
resulting from numerical simulation, Fig. 7.51a and b, were superimposed.
Figure 7.52 depicts the deformed tissue configuration (shaded) and the unde-
formed configuration, borderline.

Vector plots of the displacement fields of gluteal tissue (relative to the bone)
under maximum loading of the optimized transversal cushion shape and the block-
shaped cushion shape show that the area beneath the ischial tuberosity differs
significantly, Fig. 7.53. Whereas the block-shaped cushion causes the tissue to
displace ‘‘around’’ the ischial bone, the optimized support shape predominantly
causes lateral tissue displacement. Displacement towards the body center nearly
vanishes.

7.2.5 Discussion

The previous sections present a possible approach towards generating body
supports which reduce mechanical tissue peak stress at defined body sites. The
described approach is based on automated optimizing techniques in conjunction
with numerical modelling and simulation of tissue-support interaction. The process
is exemplarily performed aiming to minimize direct stress beneath the ischial
tuberosity. In the same manner, support shape optimization can readily be
performed to reduce any stress or strain quantity, singularly or simultaneously at

Fig. 7.50 Direct tissue stress
progression from skin level
(0.0 mm) to ischial bone
surface (43 mm) using block-
shaped cushion and
optimized cushion shape
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any body site(s). However, to determine which quantity is relevant to pressure sore
or comfort related issues, subject studies with physical cushion models may pro-
vide deeper insight.

Fig. 7.52 Superposition of
deformed and undeformed
tissue configuration of the
gluteal region

Fig. 7.51 Gluteal fat and passive muscle tissue displacement in the process of sitting down:
a undeformed configuration, b maximum tissue deformation at static equilibrium

Fig. 7.53 Displacement field of fat and muscle tissue using the plain strain model condition:
a the block-shaped cushion (s = 100 mm) and b optimized transversal cushion geometry
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Furthermore, optimized support shapes, derived in the previous sections, are
based on the particular conditions of the employed lower leg model, i.e. pre-
dominantly defined body weight, anatomy of the buttocks and tissue material
parameters. It is most likely that different cushion shapes result from the optimi-
zation process when varying any of these parameters. An approach towards a
general cushion shape, if existent, may require considering all of this information.

7.3 Shape Optimization of a Car Seat

Car seat ‘B’ was employed for the mechanical interaction simulations between
‘E-BCSS-3’ (male model) or ‘E-BCSS-4’’ (female model) and the seat, Sect.
6.3.4.1. Topology optimization simulation followed the guidelines provided in
Sect. 7.2.3. The optimization criteria aimed to minimize the direct tissue stress
component S22 (i.e. the vertical stress component in the direction of gravitational
loading) at the bone surface of the ischial tuberosity, where interaction simulation
indicated maximum values. The optimization was performed using plane-strain
models of the initial seat cushion design shape in two planes. The transversal and
sagittal plane intersected at the point and line, respectively, situated at the location
of maximum stress S22. The upper (seat contact) surface was iteratively altered for
both models by the optimization routine, until the tissue stress S22 in the desired
region was minimized.

Note: The plain strain abstraction (of the continuum lower body model) in
ABAQUS requires modeling in the 1–2-plane. Due to this requirement, the 1 and 3-
direction of the respective coordinate systems in Figs. 7.54 and 7.55 and Figs. 7.57
and 7.58 permute in transversal and sagittal modeling. The stress values derived
from both configurations refer to the permuted coordinate system axes and should
not be confused. The indices of the respective stress components must be changed

Fig. 7.54 a Initial non-optimized seat geometry in the transversal plane and b deformed state at
static equilibrium during mechanical interaction with male model E-BCSS-3 exhibiting
maximum compressive stress underneath the ischial tuberosity
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when referring to the coordinate system, as given in Fig. 7.61. Therefore, S12 and
S11, derived from simulation in the transversal plane, transform to S23 and S33,
respectively.

7.3.1 Optimization of Car Seat ‘B’ Under Male Boss-Model
Loading

7.3.1.1 Surface Seat Cushion Contour in the Transversal Plane

Figure 7.54a depicts the initial unloaded non-optimized seat surface contour in the
transversal plane of car seat ‘B’ introduced in Fig. 6.35b. Figure 7.54b depicts the
deformed tissue and seat materials under gravitational body weight loading as a
result of the mechanical interaction with ‘E-BCSS-3’, in terms of a S22 stress
contour plot. The maximum tissue stress occurred underneath the ischial tuberosity
(note: in the following and as is common practice, negative and positive stress are
referred to as compressive and tensile stress, respectively, and for clarity are
indexed with ‘‘c’’ for compression and ‘‘t’’ for tension).

Fig. 7.55 a Optimized seat surface contour in the transversal plane and b mechanical interaction
with male model E-BCSS-3 exhibiting reduced tissue stress, particularly beneath the ischial
tuberosity

Table 7.9 Maximum stress values S11, S33 and S12 prior to and after shape optimization (in the
transversal plane)

Mises S11 (MPa) S33 (MPa) S12 (MPa)

Max Tension Compression Tension Compression Max Min

Prior to optimization 0.0070 0.0041 -0.0123 0.0027 -0.0122 0.0019 -0.0013
After optimization 0.0040 0.0030 -0.0071 0.0020 -0.0074 0.0009 -0.0005
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Fig. 7.56 Tissue stress distribution S11, S33 and S12 and VON MISES equivalent stress in the
transversal plane in the pelvic region employing a male Boss-Model: a prior to and b after seat
surface optimization
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In Fig. 7.55a, the optimized seat surface contour generated with the procedure
described in Sect. 7.2.3 is depicted. In Fig. 7.55b, the reduced tissue stress
distribution resulting from mechanical tissue-seat interaction and based on the
optimized seat contour is shown. As a result of surface topology optimization in
the transversal plane, direct compressive tissue stress S22 (absolute values) was
reduced by 40 % (from -0.0129 to -0.0079 MPa).

In Table 7.9 and Fig. 7.60a direct stress components S11 and S33, as well as
shear stress S12 at the ischial tuberosity prior to and after seat surface optimi-
zation in conjunction with the male human model are depicted. In addition, in
Fig. 7.56 direct stress components S11, S33 and S12 as well as VON MISES

equivalent stress are shown in the transversal plane. The seat surface optimi-
zation led to a distinct reduction of compressive-, tensile- and shear stress, in
particular of the shear stress component S12 (cf. Fig. 7.56 bottom), which could
be crucial in seat comfort.

Fig. 7.57 a Initial non-optimized seat geometry in the sagittal plane and b deformed state at
static equilibrium due to mechanical interaction with male model E-BCSS-3 exhibiting maximum
compressive stress underneath the ischial tuberosity

Fig. 7.58 a Optimized seat surface contour in the sagittal plane and b mechanical interaction
with male model E-BCSS-3 exhibiting reduced tissue stress, in particular beneath the ischial
tuberosity
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7.3.1.2 Surface Seat Cushion Contour in the Sagittal Plane

Figure 7.57a depicts the initial unloaded non-optimized surface contour in the
sagittal plane of car seat ‘B’ and, Fig. 7.57b depicts the deformed tissue and seat
materials under gravitational body weight loading as a result of the mechanical
interaction of ‘E-BCSS-3’ in terms of a S22 stress contour plot. Again, maximum
tissue stress occurred underneath the ischial tuberosity. Application of the

Fig. 7.59 Tissue stress distribution S11, S33 and S12 and VON MISES equivalent stress in the
sagittal plane in the pelvic region employing a male Boss-Model: a prior to and b after seat
surface optimization
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topology optimization procedure shown in Sect. 7.2.3 led to the optimized seat
contour depicted in Fig. 7.58a and the tissue stress distribution depicted in
Fig. 7.58b, due to mechanical interaction with the male Boss-Model. As a result of
surface topology optimization in the sagittal plane, and similar to tissue stress
reduction from optimization in the transversal plane, direct compressive tissue
stress S22 (absolute values) was reduced by 40 % (from -0.0139 to -

0.0083 MPa).
In Table 7.9 and Fig. 7.60b the direct stress components S11 and S33, as well as

shear stress S12, at the ischial tuberosity prior to and after seat surface optimization
in conjunction with the male human model are depicted. In Fig. 7.59 direct stress
components S11, S33 and S12, as well as VON MISES equivalent stress, is shown in
the transversal plane. The seat surface optimization led to a distinct reduction of
compressive, tensile and shear stress (absolute values in Table 7.10 and
Fig. 7.60b) after surface shape optimization.

7.3.1.3 Generation of the Optimized Seat Surface in Three Dimensions

Based on the separate procedures, i.e. seat surface optimization in the transversal
and sagittal planes and employing plane-strain models, an optimized seat shape
was generated in 3D. This was accomplished by extrusion of either the optimized

Table 7.10 Maximum stress values S11, S33 and S12 prior to and after shape optimization (in the
sagittal plane)

Mises
(MPa)

S11 (MPa) S33 (MPa) S13 (MPa)

Max Tension Compression Tension Compression Max Min

Prior to
optimization

0.0100 0.0028 -0.0142 0.0021 -0.0140 0.0021 -0.0140

After
optimization

0.0023 0.0015 -0.0087 0.0011 -0.0085 0.0011 -0.0008

Fig. 7.60 a graphic representation of stress from Table 7.9 (transversal plane) and b from
Table 7.10 (sagittal plane)
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transversal shape along the optimized sagittal contour or vice versa, cf. Fig. 7.61.
The extrusion can be done manually or by partial automation, using appropriate
pre-processing tools.

In Fig. 7.62, the generation of the 3D-shape is demonstrated using the example
of extruding the sagittally optimized shape along the transversally optimized
contour. Figure 7.63 shows the seat shape from different perspectives, as well as
together with a Boss-Model and seat structure.

7.3.1.4 Tissue Stress Analysis

Extrusion of the optimized 2D-seat cushion shapes led to two different 3D-profiles
which have identical upper (seat contact) surface contours, but different bottom
contours, cf. Fig. 7.64. The profile generated from extrusion of the transversal
shape along the sagittal contour is referred to as ‘‘transopt’’. The profile generated
from extrusion of the sagittal shape along the transversal contour is referred to as
‘‘sagopt’’.

Both cushion profiles led to different tissue stress distribution at tissue locations
in the gluteal region (cf. Fig. 7.66) in interaction simulation. The variation sagopt,
in contrast to variation transopt, resulted in higher peak tissue stress values of the
stress components Sij = Sji (i, j = 1, 2, 3) (cf. Table 7.11), apart from one
exception highlighted in yellow in Table 7.11.

Fig. 7.61 3D-generation of an optimized seat surface based on both the transversally or
sagittally optimized contours

Fig. 7.62 Generation steps of the 3D-seat shape
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The following simulations of body-seat cushion interaction are thus based on
the transopt model (Fig. 7.65).

As a result of the mechanical interaction between the male Boss-Model and
both car seat cushions, the basic design and the optimized transopt variation, four
distinct regions e-merged where peak stress occurred. Three of these regions were
further differentiated into 12 anatomical positions with different peak stress values.
With the exception of maximum compressive stress Sc

11 and tensile stress St
22; as

well as the shear stresses S13max
and S23max

; the peak values of all other stress
components occurred at distinctly different locations prior to and after topology
optimization (cf. Fig. 7.66b and Table 7.12) (Note: In the following, positive and
negative shear stress are labeled with ‘‘max’’ and ‘‘min’’, respectively).

In Table 7.13, peak stress Sij (i, j = 1, 2, 3) resulting from mechanical inter-
action with the (non-optimized) basic cushion design and the optimized transopt
variation are compared. The optimized transopt variation led to a distinct tissue
stress reduction of nearly one order of magnitude!

Figure 7.67 shows the vertical direct stress S22 distribution at skin level, at the
fat-muscle interface and at the bone surface of the male Boss-Model, as a result of
interaction with the non-optimized and the optimized transopt cushion variation.
A distinct reduction of tissue stress was observed at the skin level and at the fat-
muscle interface. At the bone level stress was mainly reduced at the ischial
tuberosity and remained nearly unchanged at other bone surface locations (cf. also

Fig. 7.63 3D-seat surface in different perspectives (left and center) as well as with a male Boss-
Model (right)

Fig. 7.64 Profiles of the different seat cushions due to extrusion of a the optimized transversal
contour along the optimized sagittal contour (transopt) and b the optimized sagittal contour along
the optimized transversal contour (sagopt)

338 7 Optimization Potential of the Method



Fig. 7.68). This agrees with the previously introduced optimization goal of tissue
stress reduction at the ischial tuberosity (only).

Figure 7.68 depicts the distribution of vertical direct stress S22 at the bone
surface from different perspectives prior to and after cushion optimization. Distinct
stress reduction occurred at the ischial tuberosity.

Stress profiles along two node paths: Figs. 7.69 and 7.70 provide information
about the progression of tissue stress evaluated along two arbitrarily chosen paths in
the buttocks region, initiating at skin level and ending at the tip of the tailbone and the
ischial tuberosity. The stress curves resulting from the interaction simulation with the
non-optimzed seat cushion are displayed as continous lines and the dashed curves
belong to the interaction simulations including the optimized seat cushion.

The results along the tail bone-path show significant stress reduction of stress
components Sij (i, j = 1, 2, 3) (cf. Fig. 7.69) in the mechanical interaction sim-
ulation involving the optimized seat cushion. Note that very low tissue stress is
apparent for the first 20 mm of tissue, from the skin level towards the bone surface.
Closer towards the bone, stress increases significantly.

Table 7.11 Comparison of peak stress Sij (i, j = 1, 2, 3) of variations sagopt and transopt. The
columns show the percentage increase of the variation sagopt compared to the variation transopt

Stress (Mpa) Transopt -variation Sagopt -variation Percentage increase of variation
sagopt

Tension Compression Tension Compression Tension (%) Compression (%)

S11 0.0354 -0.0751 0.0406 -0.0927 +14.79 +23.36
S22 0.0825 -0.0659 0.1000 -0.0894 +21.12 +35.80
S33 0.0330 -0.0625 0.0347 -0.0830 +5.09 +32.81
S12 0.0151 -0.0366 0.0202 -0.0452 +33.69 +23.74
S13 0.0527 -0.0326 0.0534 -0.0413 +1.25 +26.77
S23 0.0982 -0.0107 0.1215 -0.0090 +23.73 -16.55
Von mises 0.2223 0.2754 +23.89

Note in Table 7.11, the captions ‘‘tension’’ and ‘‘compression’’ apply to direct stress, not to shear
stress!

Fig. 7.65 Graph of the stress
values from Table 7.11
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The VON MISES stress profiles of the ischial tuberosity-path (cf. Fig. 7.70) show
local maxima at the fat-muscle interface and the muscle-fat interface (at approx.
24 and 43 mm tissue depth, respectively). Tissue stress Sij resulting from inter-
action simulation with the optimized seat cushion was significantly lower com-
pared to interaction simulation with the non-optimized cushion. In addition, from
the skin level to the muscle-fat interface, tissue stress was very low.

Comparing the stress values along the paths depicted in Fig. 7.69b (tail bone tip)
and Fig. 7.70b (ischial tuberosity) after seat cushion shape-optimization show that
stress values at the ischial tuberosity nearly double at the tail bone tip. Therefore, the
tissue stress distribution at the ischial tuberosity may be crucial to comfort analysis.

Table 7.12 Assignment of peak stress
locations and peak stress

Position Peak stress

1: Femur head Scopt

22 ; Scopt

33

2: Ischial tuberosity
2.1: St

11; S
c
22; S

c
33

2.2: Sopt
12min

;Sopt
13min

2.3: Sopt
12max

2.4: S13min

2.5: Sc
11; S23max

; Scopt

11 ;S
opt
23max

2.6: St
22; S

topt

22

2.7: S12min

3: Tip of tail bone
3.1: S12max

3.2: Stopt

33

3.3: S23min

3.4: St
33; S13max

; Stopt

11 ;S
opt
13max

4: Tail bone Sopt
23min

Fig. 7.66 Tissue peak stress locations due to mechanical interaction between buttocks and a seat
cushion, a overview (1: femur head, 2: ischial tuberosity, 3 and 4: tailbone), b image detail
showing locations of peak stress prior to (green) and after (red) topology optimization
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Fig. 7.67 Vertical direct stress S22 distribution (a, d) at skin level, (b, e) in the fat-muscle
interface and (c, f) at the bone surface as a result of interaction between the male Boss-Model and
the non-optimized (a, b, c) as well as the optimized transopt cushion variation (d, e, f)

Table 7.13 Comparison of tissue peak stress Sij (i, j = 1, 2, 3) with the male Boss-Model as a
result of the (non-optimized) basic cushion shape and the optimized transopt variation

Stress (Mpa) Prior to optimization After optimization Increase (+)/Reduction(-)

Tension Compression Tension Compression Tension (%) Compression (%)

S11 0.3207 -0.1859 0.0354 -0.0751 -88.97 -59.58
S22 0.1136 -0.1566 0.0825 -0.0659 -27.35 -57.94
S33 0.1728 -0.1718 0.0330 -0.0625 -80.91 -63.63
S12 0.1139 -0.1548 0.0151 -0.0366 -86.75 -76.38
S13 0.2021 -0.1265 0.0527 -0.0326 -73.91 -74.25
S23 0.2552 -0.0156 0.0982 -0.0107 -61.52 -30.96
Von mises 0.6023 0.2223 -63.09

Note in Table7.13, the captions ‘‘tension’’ and ‘‘compression’’ apply for direct stress, not for shear
stress
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Fig. 7.68 Vertical direct stress S22 distribution at the bone level from different perspectives due
to mechanical interaction between the male Boss-Model and the non-optimized (a, b) and
optimized transopt cushion variation (c, d)

Fig. 7.69 a Stress path 3.4 (tail bone tip) according to Fig. 7.66b and b stress profiles Sij along
the path
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Fig. 7.70 a Stress path 2.4 (ischial tuberosity) according to Fig. 7.66b and b stress profiles Sij

along the path

Fig. 7.71 a Initial non-optimized seat geometry in the transversal plane and b and c corre-
sponding deformed state at static equilibrium due to mechanical interaction with female model
E-BCSS-4, depicting S22- and S12-stress distributions, d, e and f: optimized seat cushion contour
at unloaded and loaded state corresponding to Fig. 7.71a–c
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Fig. 7.72 Graphs of stress values prior to and after cushion shape optimization a in the
transversal plane and b in the sagittal plane

Fig. 7.73 a Initial non-optimized seat geometry in the sagittal plane and b deformed state at
static equilibrium due to mechanical interaction with female model E-BCSS-4, showing S22 stress
distribution; c and d: corresponding images resulting from mechanical interaction with the
optimized seat cushion
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7.3.2 Optimization of Car Seat ‘B’ Under Female
Boss-Model Loading

Since car seat optimization involving a female human model, a female Boss-
Model in this case, is identical to the approach described previously, only the
essential results are shown.

7.3.2.1 Generation of the Optimized Seat Surface in Three Dimensions

Surface Seat Cushion Contour in the Transversal Plane: Fig. 7.71a depicts the
initial unloaded non-optimized seat surface contour in the transversal plane of car
seat ‘B’ introduced in Fig. 6.30b. Figure 7.71b and c show the deformed tissue and
seat materials under gravitational body weight loading, as a result of the
mechanical interaction of ‘E-BCSS-4’ in terms of S22 and S12 stress contour plots.
In Figs. 7.71d–f the optimized seat surface contour (at the unloaded and loaded
state, corresponding to Figs. 7.71a–c) is depicted.

The (negative) shear tissue stress beneath the ischial tuberosity of the female
model is significantly reduced, employing the optimized cushion shape
(cf. Figs. 7.71c, f).

Figure 7.72a depicts the direct stress components Sii (i = 1, 2, 3) as well as
shear stress S12 and the VON MISES equivalent stress at the ischial tuberosity prior to
and after seat surface optimization. As with the male human model, the stress
components are shown as a bar graph. After optimizing the cushion, all three
compressive stresses Sii (i = 1, 2, 3) were reduced by nearly 50 %. The (positive)
shear stress S12 as well as the tensile stress S22, however, increased.

Surface Seat Cushion Contour in the Sagittal Plane: Fig. 7.73a and b depict
the initial non-optimized seat cushion shape in the sagittal plane and under gravi-
tational body weight loading as a result of the mechanical interaction of ‘E-BCSS-
4’, in terms of a S22 stress contour plot. Figure 7.73c and d show the corresponding
images resulting from mechanical interaction with the optimized seat cushion.

Fig. 7.74 Shear stress S12 distribution resulting from mechanical interaction with female model
E-BCSS 4 a prior to and b after cushion shape optimization
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Maximum tissue stress occurred beneath the ischial tuberosity. All three
compressive stresses Sc

ii (i = 1, 2, 3), as well as the (positive) shear stress
component S12 were reduced by approximately 35 % and the (negative) shear stress
S12 by nearly 50 % (cf. Figs. 7.72b, 7.74). The three tensile stresses Sii (i = 1, 2, 3),
however, were higher with the optimized cushion shape (cf. Fig. 7.72b).

Generation of the Optimized Seat Surface in Three Dimensions: Based on
the separate procedures, i.e. seat surface optimization in the transversal and sagittal

Fig. 7.75 3D-seat surface from different perspectives (left and center) and with a female Boss-
Model (right)

Fig. 7.76 Vertical direct stress S22 distribution (a, d) at skin level, (b, e) at the fat-muscle
interface and (c, f) at the bone surface, resulting from interaction between the female Boss-Model
and the non-optimized (a, b, c) as well as the optimized transopt cushion variation (d, e, f)
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planes, and employing plane-strain models, an optimized seat shape was generated
in 3D, cf. Sect. 7.3.1.3. This was accomplished by extrusion of either the opti-
mized transversal shape along the optimized sagittal contour or vice versa, leading
to the 3D-cushion shape, as depicted in Fig. 7.75.

7.3.2.2 Tissue Stress Analysis

Figure 7.76 depicts the tissue stress distribution at skin level, at the fat-muscle
interface and at the bone surface resulting from mechanical interaction between a
female Boss-Model and the non-optimized seat cushion, Fig. 7.76a–c, as well as
the optimized transopt cushion variation, Fig. 7.76d–f. Analogue to the mechan-
ical interaction involving the male Boss-Model, at skin level and at the fat-muscle
interface significant reduction of tissue stress occurred after optimization.
Stress reduction was achieved at the bone surface beneath the ischial tuberosity, as
was intended (cf. Figs. 7.76, 7.77).

As a result of the mechanical interaction between the female Boss-Model and
both car seat cushions, the basic design and the optimized transopt variation, seven

Fig. 7.77 Vertical direct stress S22 distribution at the bone level from different perspectives due
to mechanical interaction between the female Boss-Model and the non-optimized (a) as well as
the optimized transopt cushion variation (b)

Fig. 7.78 a Tissue peak stress locations due to mechanical interaction between buttocks and a
seat cushion, a overview (1: pubic bone, 2: femur, 3: ischial tuberosity, 4 and 7: tailbone),
b comparison of tissue peak stress prior to and after topology optimization
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distinct regions emerged where peak stress occurred, Fig. 7.78a. In addition,
in Fig. 7.78b, the peak stress values for stresses Sij (i, j = 1, 2, 3) resulting from
mechanical interaction with the non-optimized and the optimized seat cushion are
compared. All tissue stresses, except tensile stress S11 and (negative) shear stress
S23, were reduced at the particular locations as a result of the optimized cushion
design.

Stress profiles along two nodes paths: Figs. 7.79 and 7.80 provide information
about the progression of tissue stress, evaluated along two arbitrarily chosen paths in
the buttocks region, initiating at skin level and ending at the tip of the tailbone and
the ischial tuberosity. The stress curves resulting from the interaction simulation
with the non-optimized seat cushion are displayed as continous lines and the dashed
curves represent the interaction simulations with the optimized seat cushion.

Generally, all tissue stress components at the ischial tuberosity were reduced.
This however, did not apply for the stress components S11 and S22 at the tip of the

Fig. 7.79 a Stress path 5 (tail bone tip) according to Fig. 7.78a and b stress profiles Sij along the
path

Fig. 7.80 a Stress path 3 (ischial tuberosity) according to Fig. 7.78a and b stress profiles Sij

along the path
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tail bone. The compressive stress S22 at the tail bone tip was three-fold the stress at
the ischial tuberosity, and the shear stress S23 was eight-fold the stress at the
ischial tuberosity, compared to the stress at the tail bone tip. All stress values, with
the exception of those of S22, showed changing signs along both paths. For
example, tissue direct stress S33 was -0.08 MPa (compression) at the tail bone tip
and +0.05 MPa (tension) at the ischial tuberosity.

7.3.3 Implications of Interchanging the Female and Male Model

Tissue stress was investigated when interchanging the human Boss-Models
(female Boss-Model interacting with the seat cushion optimized for the male Boss-
Model and vice versa). The blue bars in Fig. 7.81 show the male/female buttock
tissue stress values, due to interaction with the non-optimized seat cushion (initial
geometry according to Fig. 6.30b in Sect. 6.3.4.1). The green bars represent the
male/female buttock tissue stress values, due to interaction with the optimized seat
cushion. The red bars represent tissue stress as a result of mechanical interaction of
the male model with the seat cushion optimized for the female Boss-Model, and
vice versa.

Figure 7.81a shows that buttock tissue stress (with the exception of S23) of the
male Boss-Model, interacting with the optimized seat cushion, was clearly reduced
(cf. green bars) compared to the other two variations.

Tissue stress due to interaction with the cushion optimized for the female Boss-
Model (red bars) was always lower (with the exception of tensile stress S22 as well
as both (negative) shear stresses S12 and S13) compared to tissue stress due to
interaction with the non-optimized cushion (blue bars).

Fig. 7.81 Comparison of stress when interchanging the female and male BOSS-Models: a female
Boss-Model on cushion optimized for the male mode and b male Boss-Model on cushion
optimized for the female Boss-Model
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In contrast to the previous results, the female Boss-Model showed tissue stress
due to interaction with the optimized seat cushion (cf. green bars in Fig. 7.81b),
compared with the other variations, to be lower, with the exception of tensile stress
S11, (positive and negative) shear stress S12 and (negative) shear S23. Similar to the
results found with the male Boss-Model, tissue stress (with the exception of tensile
stress S22 and (negative) shear stresses S12; S13 and S23;) as a result of interaction
with the cushion optimized for the male Boss-Model (red bars) was always lower,
compared to stress values resulting from interaction with the non-optimized
cushion (blue bars).

350 7 Optimization Potential of the Method



Chapter 8
Further Applications

This concluding chapter outlines various fields of application regarding tissue
interaction. The presented issues are current projects of the working groups of both
authors and have not been published yet.

8.1 Human Skin Tissue in the Cheek Region

In the literature, human facial skin tissue mechanical behaviour is described as
being dominated by the LANGER cleavage lines (Langer 1861) and (Rubín 1948), as
well as by the wrinkle lines (Kraissl and Conway 1949) or by the relaxed skin
tension lines (RSTL) (Borges 1960). It is reported that higher stiffness is evaluated
in direction of the LANGER cleavage lines compared to the lateral direction. Such
phenomena are said to play a dominant role during surgery and wound healing.
Mechanical optimization of a shaving head of a razor based on FE-simulations for
example, also makes use of such information since appropriate modelling of the
cheek tissue mechanical behaviour is of importance. Figure 8.1 depicts the dif-
ferent types of lines as introduced previously projected on a human face. With
regard to generation of a dedicated FE-model, these lines are to be verified via in
vivo tensile testing employing the BOSS-Procedure (cf. Chap. 2) (Schumann 2012).

8.2 Saddles for Bicycles and Motorcycles

The process of sitting of the human body on bicycle saddle is, considered from a
pure mechanical perspective, a function of the biomechanical tissue properties of
the single human individual as well as anatomy, body mass and kinematics on one
hand and the mechanical properties and geometry of the particular seating system
one the other hand. To objectively quantify mechanical loading on the human body

G. Silber and C. Then, Preventive Biomechanics,
DOI: 10.1007/978-3-642-29003-9_8, � Springer-Verlag Berlin Heidelberg 2013
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during body-saddle interaction, a distinct analysis of internal tissue stresses and
strains at all relevant tissue regions, i.e. gluteal skin, fat, muscle and bone, and
specifically arteries, by means of a dedicated human model turns out to be a
conditio sine qua non.

Previous investigations in the field of seat/ saddle evaluation have been
restricted to the use of pressure-mapping systems involving test subjects with
subjective perceptions or to the use of more or less rigid dummy devices both,
leading to insufficient non-objective information (human biological variability)
regarding tissue stress/strain distribution. In addition, such approaches do not
permit evaluation of internal tissue loadings.

Based on the BOSS-Procedure the loading of the affected tissues including
anatomical structures of the buttocks and pubic bone region are evaluated and
analyzed. Figure 8.2 shows an example of a lower buttocks model on bicycle
saddle as well as tissue and saddle stress distribution, Fig. 8.3 depicts the corre-
sponding skin tissue and saddle cover loading.

Fig. 8.2 a FE buttock model on a bicycle saddle, b unloaded configuration in section cut view
and c loaded configuration of a lower buttock model in section cut view at the ischial tuberosity
(asymmetric loading: major load on right ischial bone; note excessive loading of the pelvic floor
musculature)

Fig. 8.1 Skin tension lines: a LANGER cleavage lines, b KRAISSL wrinkle lines, c BORGES relaxed
skin tension lines (RSTL) and d principal RSTL
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8.3 Football Shoes

Footwear comfort especially in the field of soccer or football shoes depends upon
shoe materials of the sole and cleat systems as well as on the geometrical
arrangement of the single cleats itself. Quantification of the (internal) mechanical
loading and deformations of the foot tissue and ligament and bone structure
requires an adequate FE-model. Present investigations are restricted to the use of
sensor insoles which lead to limited information on the contact pressure situation
at the skin level without evaluating the internal tissue stress and strain distribution.
Employing the BOSS-Procedure, interaction between various sole-cleat systems and
the human musculoskeletal system, in particular knee and ankle joints and the
Achilles tendon, are analyzed (cf. Fig. 8.4).

8.4 Mechanical Description of Human Active Muscle

Modelling of human muscle tissue as described in Chap. 5 is based on quasi-static
in vivo experiments, whereby the muscles are assumed to be in a passive state.
This assumption is justified for a first approximation to describe statically loaded

Fig. 8.3 a Example of a lower buttocks model on bicycle saddle in loaded configuration (image
in section cut view, fat (light brown), muscle (dark brown) and bone (grey), b skin level vertical
direct stress distribution and c pressure distribution on saddle

Fig. 8.4 Interaction between the sole of a shoe and foot: a photograph of the physical loading
situation, b FE simulation and c FE foot model in section cut view
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soft tissue regions, as encountered in the seated or recumbent body position
(Chaps. 6 and 7). Under dynamic loading, such as during walking, running or
automotive crash, a different situation is encountered. Here, the muscles or muscle
groups, active during body motion, must be modelled as active elements. Aside
from adequate material equations employed for continuum mechanical description
of muscles (to date employing the contractive HILL model, Hill (1938), which is
based on three rheological elements), appropriate in vivo experiments are essential
to determine the material functions. A feasible approach conducted by the authors’
group is to load (i.e. stress) selected (single) muscles in a defined way and at the
same time perform indentation experiments to generate force-displacement data.
‘‘Material curves’’, which parametrically depend on respective muscle tension can
thus be obtained. Figure 8.5 depicts characteristic biceps loading and unloading
curves obtained from a male subject at eight different external loads (i.e. muscle
tensions), (Wrobel 2011) and (Sachse 2012).

8.5 Micro-Mechanical Modelling of Adipose Tissue

The mechanical characterization of human tissue material in Sect. 5.2 is based on a
phenomenological description, whereby the material is treated as a continuum. The
tissue deformation is described on the macroscopic level and the material is
regarded as uniformly or continuously distributed. The discontinuous character of
the tissue on the microscopic level is ignored.

The source of certain empirical observations, however, such as the blocking or
‘‘lock-up’’ effect when adipose tissue is compressed, as described in Sect. 5.2.2.3
and reported by (Comley and Fleck 2010), cannot be explained with the previously
described approach. One feasible approach to gain insight into such an effect is
modelling the material with non-classical continuum models (COSSERAT- and/or
gradient theories) which can represent the inhomogeneous continuum element as a
continuum again. However, this approach has the disadvantage that additional

Fig. 8.5 a Biceps of a male subject supported in a test rig, b hysteresis force-displacement
curves of the stressed biceps at different external loads (i.e. muscle tensions)
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degrees of freedom and/or higher gradients must be introduced. Another approach
is to separately model relevant tissue structures based on continuum mechanical
methods on the microscopic level. This approach was used for subcutaneous
adipose tissue employing histological section cut images of white adipocytes and
modelling the lipid-filled cell structures and the adjacent extracellular matrix (i.e. a
framework of collagen fibres) on a scaled level (total model size:
15 9 15 9 5 mm) with finite elements, Fig. 8.6 (similar to Fig. 5.4b in Sect. 5.1).

In Fig. 8.6b the finite element modelled structures of Fig. 8.6a are depicted
(extracellular matrix excluded for clarity). The meshed in-plane structures are
extruded to obtain a volume model, Fig. 8.7a.

To obtain exclusively geometrical effects in the FE simulation, the nonlinear
contributions of the employed OGDEN model (3.272) were reduced by fitting the
material parameters (over a sufficient strain range) to linear-elastic stress-strain
curves, assumed for both adipose and extracellular matrix. The corresponding
YOUNG’S modulus of the force-displacement curve used for extracellular matrix
parameter fitting was assumed to be much smaller than that of adipose cell
material, specifically: Ect = 0.01 kPa (extracellular matrix) and Eac = 3.52 kPa
(adipose cells) and geared to the initial value for adipose tissue established in Sect.
5.2.3.2. The employed linear elastic parameters rely on values previously estab-
lished, the ratio between matrix material and lipid cell material, however,
is assumed.

Images of simulated tissue compression at different stages of densification are
depicted in Fig. 8.8.

Simulated compressive force and prescribed tissue displacement were recorded.
The force values strongly increase at higher compression at a stage where the

Fig. 8.6 a Histological image of white adipose tissue with adipose cells and extracellular matrix
(image adopted from www.mhhe.com/biosci/ap/histology_mh/), b superimposed finite element
mesh (only adipose cells for clarity)
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single lipid-droplets are in contact, Fig. 8.8e; at this stage, a small increase in
displacement leads to a large increase in force.

To compare the simulated force-displacement results with the experimental
data obtained from fat tissue indentation as described in Sect. 5.2 (Figs. 5.18 and
5.24), the values are normalized to the peak force and peak displacement,

Fig. 8.7 Finite element model in a perspective section cut view and b in frontal view with
boundary conditions (left side fully constrained and displacement boundaries (displacement field
vector u) on the right)

Fig. 8.8 Stages of tissue densification: from a uncompressed to e highly compressed
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respectively, Fig. 8.9. The results obtained from the adipocytes and extracellular
matrix modelling reasonably fit the experimental data.

It may be concluded, in a first approximation, that the linear portion of the
experimental curve in Fig. 8.9 (normalized displacement \0.9) is dominated by
the contribution from the soft extracellular matrix and that during densification, the
contribution from the adipose cells increasingly prevails.

Thus, an additional possibility for tissue modelling, using the simulation tool to
gain deeper insight and visual perception in tissue deformation mechanics on the
micro-level, is provided.

Fig. 8.9 Comparison of simulation results with experimental data obtained from adipose tissue
indentation
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