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Part I

ANOVA analysis





1 What’s stats got to do with it?

The word “statistics” can strike fear with many individuals whether they are under-
graduate or graduate students, but also with many faculty members and researchers. 
This fear resides with the preconception that statistics are hard to perform. However, 
think about these questions, “Do you know how to add and subtract numbers? Do 
you know how to multiply and divide numbers?” If the answers to these questions 
are “yes,” then you have a basic understanding of the foundation of statistics. With 
the advent of computers there came statistical software packages, therefore, you do 
not even have to add, subtract, multiply, and/or divide, because the program does 
those functions for you. What is important and most critical, however, is that 
researchers at all professional levels need to develop their skills to (1) understanding 
which statistical procedure(s) is appropriate to use for a given research question, 
(2) interpret the results, and (3) present the findings in a concise written manner.
 In the context of our field, graduate programs related to kinesiology/exercise 
science may not require an extensive number of courses in statistics although this 
trend is starting to change. In addition, some departments outsource the statistical 
courses to another department such as psychology or public health. Herein lies the 
first challenge in learning statistics. That is, the kinesiology/exercise science student 
is not familiar with the terminology or assessment tools used in these other discip-
lines. As a result, the individual may have difficulty understanding which statistical 
procedure to use and how to interpret the output provided by the statistical 
program. Our goal here is to be discipline specific incorporating commonly used 
independent and dependent variables for each of the examples. For the faculty 
member a potentially different challenge is experienced. That is, they might rely on a 
biostatistician who may not always understand the nuances of the research question 
and/or measurement tools. Although we believe that biostatisticians are a beneficial 
part to the research team, it is imperative that the lead researcher has a strong know-
ledge and understanding of the statistical procedures they are using to answer their 
research question(s).
 The overall goal of this textbook, therefore, is to expose the reader to the various 
advanced statistics techniques commonly seen in journals related to kinesiology/exer-
cise science. Thus, we have refrained from presenting an exhaustive list of statistical 
procedures which are rarely used and/or require unique research designs that are 
outside the mainstream. Instead, we present a variety of statistical analyses which 
are commonly reported in journals related to kinesiology/exercise science. Moreover, 
detailed annotations of each statistical output from the IBM® SPSS® Statistics soft-
ware (SPSS) statistical packages are provided to help facilitate the interpretation of 
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the analyses. In addition, we also provide a sample write- up of the results which can 
be modeled when writing a thesis, dissertation, or manuscript.
 There are, however, a few caveats to consider with this textbook. First, this was 
written with the assumption that the reader has completed an introductory statistics 
course covering basic conceptions and principles related to inferential statistics. At 
some Universities the introductory course may have been called Measurement and 
Evaluation, whereas other institutions refer to the course as Introduction to Statis-
tics. Nevertheless, we will be building on this foundation of basic knowledge to 
provide the reader with more advanced skills. Second, we have primarily used SPSS 
to demonstrate the various statistical procedures, because of the ease with using the 
pulldown menus. However, we are aware that some of the more complex statistical 
procedures require syntax that cannot be derived from the pulldown menus. In such 
cases, we have provided the syntax which the reader will need to incorporate. More-
over, newer versions of SPSS may present their pulldown menu options differently 
than older versions. In such cases, we will provide instructions as needed. Lastly, we 
acknowledge that other statistical programs such as SAS and R are used and, in 
some cases, may be preferred over SPSS.
 This textbook is divided into three sections (analysis of variance [ANOVA], 
Regression, and MANOVA). This approach was taken because ANOVA and regres-
sion are two of the most popular statistical techniques used in kinesiology/exercise 
science. As a practical matter, we wanted the reader to have the information on these 
two areas of statistics in one book that may be used as a pocket reference time and 
time again. Alternatively, faculty may use this textbook to teach ANOVA and 
Regression within the same semester or during the shorter summer semester over 
two sessions. Lastly, we have also added a third section called special statistical pro-
cedures. In this initial edition, we are introducing multivariate analysis of variance 
(MANOVA) and hope to add other more complex statistical procedures in sub-
sequent editions based on feedback from the readership.



2 Organizing the data

Introduction

Prior to starting the formal statistical analyses, it is important to organize the data 
file in a manner where the correct statistical analyses will be performed. For simpli‑
city and ease of use we recommend generating the data set in Microsoft Excel. In 
addition, importing the Excel file into SPSS is convenient (i.e., drag‑and‑drop in 
SPSS) and will maintain the majority of the formatting initiated in the Excel file.

Arranging the data

Typically, each row in the Excel file will be a study participant, whereas each column 
will be a variable (Table 2.1). Row 1 is usually used as the label for each column, 
because this will allow SPSS to use the first row as the label. Therefore, reducing 
time to re‑ label the SPSS file. In addition, make sure to use ‘_’ to separate phrases 
when naming each column in the Excel file. This is important, because SPSS will not 
recognize spaces and in fact will delete spaces. Therefore, in the example below for 
weight, SPSS would label the column “Weightkg” instead of “Weight_kg.” The 
latter version is easier to read and identify on the SPPS output.
 If calculations are to be performed, we recommend performing all calculations in 
the Excel file before importing it into SPSS. For example, we calculated relative V

·
o2 

max from body weight and the absolute V
·
o2 in liters per minute. Although SPSS has 

the “compute” command to perform the same calculations, it will need to be per‑
formed repeatedly if errors are detected for the variables of interest. For example, 

Table 2.1 Arrangement of variables in Excel

Subject Age Weight_kg Vo2max_liters_per_minute Relative_Vo2max

 1 22.0 70.0 4.5 64.3
 2 25.0 72.0 4.2 58.3
 3 23.0 80.0 4.6 57.5
 4 21.0 81.0 4.0 49.4
 5 22.0 86.0 4.0 46.5
 6 24.0 88.0 3.5 39.8
 7 26.0 82.0 3.6 43.9
 8 22.0 75.0 3.9 52.0
 9 23.0 74.0 4.5 60.8
10 24.0 88.0 4.3 48.9
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using Table 2.1, the investigator typed 7 for the weight of subject #1 instead of 70. 
The relative V

·
o2 max value would then be 642.9. In Excel this can be changed from 

“7” to “70” and the relative V
·
o2 max value updates automatically to 64.2, whereas 

in SPSS the investigator would have to re‑ run the compute command to update the 
relative V

·
o2 max column, because it will not automatically update that cell.

Organizing the data for ANOVA design

When performing analysis of variance (ANOVA) statistical procedures the investiga‑
tor has to be cognizant of how the data are arranged. Unfortunately, SPSS will still 
perform the statistical analyses and will not recognize that the data were arranged in 
the incorrect format. Therefore, if the investigator wanted to examine V

·
o2 max of 

individuals in three age groups (young, middle‑ aged, and old) the data should be 
arranged in the Excel file as shown in Table 2.2.
 There are two options to labeling the group variable. First the investigator can use 
a similar labeling approach as shown in Table 2.2, or use the second approach by 
coding each group. That is, each group would be assigned a value as shown in 
Table 2.3. Therefore, the young group is coded “0,” whereas the two other groups 
are coded “1” and “2,” respectively. We suggest numerically coding the groups 

Table 2.2 Depiction of the group variable for ANOVA design

Subject Group Age Weight_kg Vo2max_liters_per_minute Relative_Vo2max

 1 young 22.0 70.0 4.5 64.3
 2 young 25.0 72.0 4.2 58.3
 3 young 23.0 80.0 4.6 57.5
 4 middle‑aged 21.0 81.0 4.0 49.4
 5 middle‑aged 22.0 86.0 4.0 46.5
 6 middle‑aged 24.0 88.0 3.5 39.8
 7 middle‑aged 26.0 82.0 3.6 43.9
 8 old 22.0 75.0 3.9 52.0
 9 old 23.0 74.0 4.5 60.8
10 old 24.0 88.0 4.3 48.9

Table 2.3 Depiction of the group variable coded for ANOVA design

Subject Group Group_
Coded

Age Weight_kg Vo2max_liters_ 
per_minute

Relative_
Vo2max

 1 young 0 22.0 70.0 4.5 64.3
 2 young 0 25.0 72.0 4.2 58.3
 3 young 0 23.0 80.0 4.6 57.5
 4 middle‑aged 1 21.0 81.0 4.0 49.4
 5 middle‑aged 1 22.0 86.0 4.0 46.5
 6 middle‑aged 1 24.0 88.0 3.5 39.8
 7 middle‑aged 1 26.0 82.0 3.6 43.9
 8 old 2 22.0 75.0 3.9 52.0
 9 old 2 23.0 74.0 4.5 60.8
10 old 2 24.0 88.0 4.3 48.9
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because it allows for flexibility with SPSS as some statistical functions require a 
numerical value to compute the statistical procedure(s). After coding the groups, the 
investigator can assign a label for each code, in SPSS, so that the SPSS data file looks 
like Table 2.3. We refer the reader to the SPSS manual on labels for the step‑ by‑step 
approach to achieving this task.

Organizing the data for repeated- measures ANOVA design

Suppose that the investigator needs to examine 1 RM (repetition maximum) strength 
of 10 subjects at several time points. For example, the investigator wants to deter‑
mine if a supplement would help increase 1 RM after 2 and 24 hours of ingestion 
compared to the initial 1 RM. In this case the investigator would arrange the data as 
shown in Table 2.4. Keep in mind that if this Excel table is imported into SPSS, there 
will be an “@” presented in front of the “1 RM” as such “@1RM.” Therefore, if the 
user wants to avoid the “@” in their SPSS column then start the column with a letter 
such as “RM_1.”
 If the investigator was examining several groups, they would add a “group” 
column such as that shown in Table 2.5 to examine the differences between groups 
at each time point.

Table 2.4 Depiction of arranging the data for repeated‑measures ANOVA

Subject IRM_kg_PRE IRM_kg_2h 1RM_kg_24h

 1 70.0 76.0 79.0
 2 63.0 69.0 72.0
 3 80.0 86.0 89.0
 4 88.0 94.0 97.0
 5 84.0 90.0 93.0
 6 71.0 77.0 80.0
 7 72.0 78.0 81.0
 8 77.0 83.0 86.0
 9 60.0 66.0 69.0
10 63.0 69.0 72.0

Table 2.5  Depiction of arranging the data for repeated‑measures ANOVA with a group 
variable

Subject Group Group_Coded IRM_kg_PRE IRM_kg_2h 1RM_kg_24h

 1 young 0 70.0 76.0 79.0
 2 young 0 63.0 69.0 72.0
 3 young 0 80.0 86.0 89.0
 4 middle‑aged 1 88.0 94.0 97.0
 5 middle‑aged 1 84.0 90.0 93.0
 6 middle‑aged 1 71.0 77.0 80.0
 7 middle‑aged 1 72.0 78.0 81.0
 8 Old 2 77.0 83.0 86.0
 9 Old 2 60.0 66.0 69.0
10 Old 2 63.0 69.0 72.0
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Organizing the data for regression analysis

Setting up the data file for regression analysis is the same as for ANOVA (see Tables 
2.1–2.5). The only caveat is that dummy variables are needed when there are three or 
more levels of categorical variable such as in our group example (i.e., young, middle‑ 
aged, and old). For example, ethnicity is a categorical variable that could have three or 
more options. We present an example of dummy coding in the regression section.

Rules of thumb for organizing your data

Whether performing ANOVA or regression analyses, there are several rules to keep 
in mind as the reader is setting up their data file in Excel:

1. Always label each column (see Tables 2.1–2.5).

a. Make sure to use ‘_’ to separate out phrases so that once the Excel file is 
imported into SPSS the column titles are consistent with the Excel file.

2. Assign one column per grouping variable. That is, if there are two grouping vari‑
ables (gender and experimental condition) then there will need to be two 
columns, whereas if there are three grouping variables (gender, experimental 
condition, and mode of exercise) then there will need to be three columns. In 
addition, make sure to numerically code each group (see Table 2.3) to facilitate 
the statistical analysis when importing the data into SPSS.

a. Caveat: when performing ANOVA via the General Linear Model function 
the investigator can use the “Group” variable that has string characters, 
Table 2.2. The investigator will, however, need to code the group variable 
for regression analyses especially if there are three or more variables.

3. Each dependent variable (i.e., outcome measure) should be in its own column as 
shown in Table 2.1.

4. If certain variables need to be calculated, do those in Excel using the “function” 
feature before importing the data into SPSS.

a. Note: For columns with numeric values perform the following steps in 
Excel:

i. Highlight all the appropriate cells.
ii. Designate those cells as “Number” using the Number Format.

iii. Assign the appropriate number of decimal places.
iv. Then save the file.
v. If these steps are not performed, then SPSS will default each cell with 

numbers to 15 decimal places when the Excel file is imported.

5. If there are data missing for a subject, then leave that cell in the Excel file empty. 
When the file is imported into SPSS it will remain empty.

a. Note: In some textbooks it is suggested to use “99” as the value for missing 
data rather than leaving the cell empty. The potential problem with using 
“99” or any other value to designate as “missing data” is that the user then 
needs to indicate, in SPSS, that designation or SPSS will calculate the “99” 
as a true data point.
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6. Always check the data entry to avoid typos.
7. Save the Excel data file and then create a second duplicate Excel file that will be 

imported into SPSS. For example, the reader can save the original Excel file as 
“DataSet_1.xls” and then re‑save as “DataSet_1_SPSS.xls” as this second file 
will be the one imported into the statistical program. This way, if there are 
issues with importing the Excel file into SPSS, the chances of the original data 
file becoming compromised are eliminated.

Importing your data file into SPSS

There are a number of ways to import the Excel file into SPSS and, therefore, we 
would refer the reader to the SPSS manual which will describe step‑ by‑step proced‑
ures to successfully accomplish this goal. One simple approach, however, is to open 
SPSS and once the empty data sheet appears, drag‑and‑drop the Excel file into that 
data sheet and then select the options presented in the dialogue box that will appear.



3 Review of one- way analysis of 
variance (ANOVA)

Introduction

In this chapter, we provide a brief overview of ANOVA, whereas in subsequent 
chapters we will discuss in‑depth advanced ANOVA designs.

Research questions

The types of research questions one can answer with one‑ way ANOVA are related 
to examining mean differences among groups. That is, the investigator may be inter‑
ested in comparing mean differences between groups for a dependent variable. For 
example, the investigator needs to determine if mean differences exist for leg strength 
between male basketball players at three different conferences. Alternatively, the 
investigator may be interested in determining if there are differences in maximal 
oxygen uptake between marathon runners, cyclists, sprinters, and adventure racers, 
and if so, which group has the highest value.
 The investigator also uses one‑ way repeated‑ measures ANOVA to determine if a 
dependent variable changes over time for a set of individuals. For example, the investi‑
gator may be interested in determining if muscle strength changes over a 5‑week period 
in men. In this case, each subject would be tested weekly (week 1 to week 5) for an 
experimental period. As a result, a measure of weekly strength would be obtained. The 
one‑ way repeated‑ measures ANOVA would then allow the investigator to determine if 
there are differences in strength for that time period (i.e., 5 weeks).

Review of ANOVA

Prior to performing the formal analysis (i.e., ANOVA) it is important to make sure 
that the assumptions have been met. Our expectation is that the reader has been 
taught and understands the assumption of ANOVA in an introductory statistics 
course. In addition, we anticipate that the reader has knowledge of potential rem‑
edies that one would take if one or more of those assumptions are violated.
 Typically, ANOVA is used when there are three or more groups as it is statisti‑
cally inaccurate to perform multiple independent samples t‑ tests in place of 
ANOVA. One rationale, though there are others as well, is that multiple t‑tests 
increase the familywise error rate which is related to maintaining the probability 
of falsely rejecting the null hypothesis below the alpha level, usually set at 0.05. It 
is also critical for the reader to remember that they should not perform multiple 
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paired t‑ tests in place of one‑ way repeated‑ measures ANOVA without any adjust‑
ment to the alpha level. Again the same inflation in familywise error rates will 
occur which will invalidate your results and, therefore your conclusions.

Using SPSS pulldown menu for one- way ANOVA using General 
Linear Model

1. Click Analyze, then move cursor to General Linear Model and then move cursor 
to Univariate and then left click.

2. Click Group, then move to Fixed Factor(s) box.
3. Click Relative_Vo2max, then move to Dependent Variable box.
4. Click Post Hoc.

a. Click Group in the Factor(s) box and move to Post Hoc Tests for box.
b. Check the box for Tukey which is Tukey HSD (Honest Significant Difference).

i. Do not select Tukey’s‑b.

c. Then click Continue.

5. Click on Options.

a. Click on Group in the Factor(s) and Factor Interactions box and move to 
Display Means for box.

b. Check the box for Descriptive statistics.
c. The click Continue.

6. Click OK.

Syntax for one- way ANOVA using General Linear Model

UNIANOVA Relative_Vo2max BY Group
/METHOD=SSTYPE(3)
/INTERCEPT=INCLUDE
/POSTHOC=Group(TUKEY)
/EMMEANS=TABLES(Group)
/CRITERIA=ALPHA(.05)
/DESIGN=Group.

Interpreting the output

As shown in Table 3.1, IBM SPSS Statistics software (SPSS) will generate the Tests 
of Between‑ Subjects Effects table. The Group variable shows that there is a 
significant overall F‑ ratio (9.233; p = 0.011). If the overall F‑ ratio was not significant 
(p > 0.05) there would be no further analyses. The investigator would conclude that 
there were no significant mean differences between the three groups for the outcome 
variable.
 Since there was a significant overall F‑ ratio, a post‑ hoc follow‑ up test needs to be 
conducted to identify which groups are significantly different from one another. 
Therefore, SPSS first provides the Estimated Marginal Means table (Table 3.2) which 
is the data the investigator will use to report mean and standard error values for 
each group. Thereafter, SPSS provides a multiple comparisons table (Table 3.3). 



Table 3.1  Tests of between‑subject effects, reprint courtesy of International Business 
Machines Corporation

Dependent Variable: Relative_Vo2max

Source Type III sum of squares df Mean square F Sig.

Corrected Model 406.530a 2 203.265 9.233 .011
Intercept 27518.092 1 27518.092 1250.008 .000
Group 406.530 2 203265 9.233 .011
Error 154.100 7 22.014
Total 27742.569 10
Corrected total 560.630 9

Source: © International Business Machines Corporation.

Note
a R Squared = .725 (Adjusted R Squared = .647).

Table 3.2  Estimated marginal means, reprint courtesy of International Business Machines 
Corporation

Group
Dependent Variable: Relative_Vo2max

Group Mean Std. error 95% confidence interval

Lower bound Upper bound

middle‑aged 44.892 2.346 39.345 50.440
old 53.891 2.709 47.486 60.297
young 60.040 2.709 53.634 66.445

Source: © International Business Machines Corporation.

Table 3.3  Multiple comparisons, reprint courtesy of International Business Machines 
Corporation

Dependent Variable: Relative_Vo2max
Turkey HSD

(I) Group (J) Group Mean difference 
(I–J)

Std. 
error

Sig. 95% confidence interval

Lower bound Upper bound

middle‑aged old –9.00 3.584 .091 –18.55 1.55
young –15.15 3.584 .010 –25.70 –4.59

old middle‑aged 9.00 3.584 .091 –1.55 19.55
young –6.15 3.831 .305 –17.43 5.13

young middle‑aged 15.15* 3.584 .010  4.59 25.70
old 6.15 3.831 .305 –5.13 17.43

Source: © International Business Machines Corporation.

Notes
Based on observed means.
The error term is Mean Squared(Error) = 22.014.
* The mean difference is significant at the .05 level.
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As shown in Table 3.3, there is a significant mean difference between the middle‑ aged 
and young groups (p = 0.010), whereas there is no significant mean difference between 
any combination of the other groups (p‑ values ranging from 0.091 to 0.305).

Sample write- up template

The one- way ANOVA revealed a significant overall F- ratio [F(dfgroup,dferror) = F- ratio 
value, p < 0.05]. The follow- up post- hoc Tukey HSD analysis indicated that Group 
A (mean ± SEM) had significantly larger strength index than Groups B (mean ± 
SEM) and C (mean ± SEM). In addition, we found that there was a significant mean 
difference between Group B and C.

Sample write- up for example

The one‑ way ANOVA revealed a significant overall F‑ ratio [F(2,7) = 9.233, 
p = 0.011]. The follow‑ up post‑ hoc Tukey HSD analysis indicated that individuals in 
the middle‑ aged group (44.8 ± 2.3 ml/kg/min) had significantly lower relative Vo2max 
values than the young group (60.0 ± 2.7 ml/kg/min). There were, however, no mean 
differences between the young and old (53.9 ± 2.7 ml/kg/min) groups or the middle‑
aged and old groups.



4 Two- and three- way factorial ANOVA

Introduction

In Chapter 3 we briefly discussed one- way ANOVA which focuses on a single inde-
pendent variable. In this chapter we will extend this concept to two or more 
independent variables. The use of factorial ANOVA is perhaps one of the most 
common statistical procedures used to analyze data in kinesiology/exercise science. 
This is because we often want to examine the interaction between at least two vari-
ables for a specific dependent variable. Although there are different variations of fac-
torial ANOVA the primary focus of this chapter will be on two- way and three- way 
factorial ANOVA. Higher order factorial ANOVA such as four- or five- way are 
generally not recommended as they require more subjects per condition and more 
complex analyses the results of which are difficult to interpret (1).

Research questions

The types of research questions answered with two- way factorial ANOVA are those 
which examine the interaction between training and supplementation, or gender and 
age, on a dependent variable. For example, the investigator may be interested in 
determining the effects of a single dose of caffeine and endurance training status on 
time to exhaustion (4). In such a study, there would be an experimental “group” 
independent variable indicating individuals receiving a caffeine supplement or those 
receiving a sugar pill (a placebo), and a “training status” independent variable with 
two levels (trained individuals or novice individuals). This design, therefore, would 
be a 2 [group: placebo or supplement] × 2 [training status: trained or novice] facto-
rial ANOVA. The investigator might employ such a design if they believe that the 
effects of supplement use on time to exhaustion depends on whether individuals are 
trained or novices. That is, whether there is an interaction between group and train-
ing status.

Review of factorial ANOVA

Factorial ANOVA is simply an extension of one- way ANOVA with the addition of 
another independent variable or variables. The same analysis process is undertaken, 
with variance partitioned into systematic and error variation. Multiple effects are 
now considered, including main effects (similar to the effects we see for a one- way 
ANOVA), and interaction effects of the independent variables. These are then 
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followed up with post- hoc tests for the main effects, and simple main effects tests or 
planned mean comparisons for the interaction terms.
 The assumptions of factorial ANOVA are similar to those applied in one- way 
ANOVA, and are applied to the independent variables and interaction cells on the 
dependent variable. Although generally robust to assumption violations, factorial 
ANOVA results are susceptible to bias especially when group sizes are disparate 
with unequal variances.
 Independence of observations. As in one- way ANOVA, observations should be 
independent of each other. This is assessed by knowing your data. For example, are 
individuals in the sample related to each other (e.g., husband/wife)? If the investiga-
tor retained a sample of runners for a study from a local running club, such a 
dependency is possible.
 Equality of cell sizes. Group or levels of the independent variable should be the 
same or approximately equal, including the cells for the interaction terms. If cells are 
not equal, the default Type III sum of squares performs an unweighted means 
analysis of the data which will make appropriate adjustments to the cell mean values 
to avoid a condition effect. Condition effects are biased findings in the main effect 
results for factorial ANOVAs due to the group means being differentially weighted 
based on their cell sizes. Type III sum of squares is the default in SPSS.
 Even though the Type III sum of squares protects against condition effects, unequal 
cell sizes will continue to pose problems in terms of the other assumptions noted 
below. In particular, unequal cell sizes can heavily influence group variances, thus 
affecting homogeneity of variance. Very dissimilar group sizes should be avoided.
 Normality. Dependent variable values should be normally distributed within each 
level of the independent variables and also within each cell of the interaction terms. 
This is assessed using histograms, box- whisker plots, and normality plots for the 
independent variable levels and interactions, looking for deviations from a normal 
distribution. Skewness and kurtosis may also be assessed, standardizing these values 
by dividing by their standard errors, and evaluating the resulting z-score value at a 
p < 0.001 value. Violation of normality is easily taken care of through transforma-
tions on the dependent variable.
 Homogeneity of variance. Variances within each level of the independent vari-
ables and within each of the interaction terms is also required. Evaluating cell 
variances using a 9:1 ratio or less rule – placing the largest group variance over the 
smallest, called an Fmax test will usually suffice to assess this assumption, although 
if group sizes are vastly different or have small cell sizes, even small variance ratios 
(3:1) can lead to an inflated Type I error rate. In such instances, consider a more 
stringent alpha level (e.g., p < 0.01 instead of p < 0.05). For more complex factorial 
designs, Box’s M test is also offered in SPSS to make this evaluation in aggregate 
(evaluated at a p < 0.001 cutoff ).

Terminology

As we have mentioned previously, each statistical procedure has its own terminology 
to describe various components of the process. For factorial ANOVA the term factor 
refers to the independent variable(s). Therefore, in the above example, “group” and 
“training status” are factors and since we have two factors then we have a two- way 
factorial ANOVA. If, however, we wanted to add gender as a factor, then we would 



16  ANOVA analysis

have three factors and conduct a three- way factorial ANOVA. In our 2 × 2 example, 
each factor has two levels. It should be noted that in a two- way factorial ANOVA a 
factor can have more than two levels. For example, we could add another group (i.e., 
elite athletes) to the training status factor such that our analysis would be a 2 × 3 fac-
torial ANOVA, but still recognizing that it is a two- way ANOVA.
 As a method of visualizing the statistical design, it is often helpful to draw out the 
conditions as shown below for a particular dependent variable. The main effect, 
therefore, examines the marginal means for each factor as shown below. Thus, a 
significant main effect for training status would indicate that overall, the trained 
group took longer to reach exhaustion than the novice group (75 vs. 40 minutes) 
regardless of which group there were assigned. Alternatively, a main effect for group 
would indicate that overall, caffeine increased time to exhaustion more than the 
placebo (70 vs. 45 minutes) regardless of training status.
 Typically, when performing a two- way factorial ANOVA, we are interested in 
both the main effects (similar to effects noted in a one- way ANOVA), but more 
importantly in attaining a significant (p < 0.05) interaction. This means that one 
factor influences the effects of the other factor at a particular level (in some circum-
stances, this may be described as a moderated effect). Usually, the hypotheses in fac-
torial designs will reflect the expected effects of the interaction between the 
independent variables. Both main effects and interaction effects are provided in the 
ANOVA summary table in SPSS, and are evaluated for significance (p < 0.05).
 When significant main effects are attained, they are followed with a priori tests 
(e.g., contrasts), or multiple comparison procedures (e.g., Tukey HSD test). These 
are typical approaches followed in one- way ANOVA designs when there are three or 
more levels of an independent variable to evaluate mean differences. If there are only 
two levels of an independent variable in a factorial design (e.g., control vs. experi-
mental group), the resulting F-test for the main effect directly assesses the group 
difference. In such a case, the investigator would look at the table of mean values 
provided in the output display.
 When a significant interaction is attained, a number of approaches may be adopted. 
One approach is called a simple main effect test, which evaluates the systematic vari-
ance of one independent variable holding constant each level of the other independent 
variable on the dependent variable. For more complex designs (i.e., 3 × 3 factorial 
ANOVA), after simple main effect tests are performed, direct mean contrasts are 
required to further evaluate mean differences. Such a test could be the familiar Scheffé 
test which provides mean comparisons while controlling for family- wise error (i.e., 

Table 4.1  Depiction of the 2 × 2 factorial ANOVA

Training status

Trained Novice

Group Placebo 60 30 µ = 45
Caffeine 90 50 µ = 70

µ = 75 µ = 40

Source: © International Business Machines Corporation.
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holding the Type I error rate at the typical p < 0.05 level), utilizing the MSerror term 
from the factorial ANOVA in the formula (3). Another approach is to perform direct 
contrasts of the interaction cells of interest (based on the research hypothesis), again 
making appropriate adjustments to control family- wise error. In this case, again a 
Scheffé test with formula edits to reflect the factorial design could be utilized, an a 
priori t- test with a stringent alpha level (say p < 0.01), or the investigator could conduct 
planned contrasts.

Three- way ANOVA

The three- way ANOVA extends the two- way ANOVA by adding another factor to 
help explain the dependent variable. In three- way ANOVAs, main effects are 
produced, as are two-way interactions, and three- way interactions. Follow- up tests 
are the same as those used for two- way ANOVA, including the use of simple main 
effects or planned comparisons for the interaction terms.

Examples of two- way and three- way ANOVAs

Complete examples of two-way and three-way ANOVAs are presented below with 
annotations. For the two- way ANOVA, you have a 3 (group: control, placebo, or sup-
plement) × 3 (training: 5, 10, or 15 days) with the dependent variable being strength. In 
the three- way ANOVA, you are interested in examining the effects of gender on the 
dependent variable in addition to the two conditions. Therefore, you have a 3 (group: 
control, placebo, or supplement) × 3 (training: 5, 10, or 15 days) × 2 (gender: male or 
female) with the dependent variable still being strength. Along with programming 
syntax and output for the factorial ANOVAs in SPSS, we also provide simple main 
effects tests.

Using SPSS pulldown menu for two- way factorial ANOVA

 1. Click Analyze, then move cursor to General Linear Model, and then move 
cursor to Univariate and then left click.

 2. Click Group, then move to the Fixed Factor(s) box.
 3. Click Days_of_training, then move to the Fixed Factor(s) box.
 4. Click Strength, then move to the Dependent Variable box.
 5. Click Plots.

a. Select group from the Factors box and move to the Separate Lines box.
b. Select days_of_training from the Factors box and move to the Horizontal 

Axis box.
c. Click Add.
d. Click Continue.

 6. Click Options (in newer versions of SPSS you will need to click the EM 
Means box).

a. Select group from the Factor(s) and Factor Interactions box and move to 
Display Means for box.
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b. Select days_of_training from the Factor(s) and Factor Interactions box and 
move to Display Means for box.

c. Select group* days_of_training from the Factor(s) and Factor Interactions 
box and move to Display Means for box.

d. Check the box for Compare main effects.
e. Choose Bonferroni from the pulldown menu for Confidence interval 

adjustment.
f. In the Display box, check the box for Descriptive statistics.
g. Click Continue.

 7. Click Paste.
 8. You will see the entire syntax for this statistical procedure which looks like the 

syntax below.
 9. Before performing the analysis, however, you need to add a line of syntax which 

will provide the follow- up test for the significant interaction.

a. This syntax is: /EMMEANS=TABLES(group*days_of_training) Compare 
(group) adj(BONFERRONI).

i. This will allow us to examine mean differences between each length of 
training across the three groups.

b. /EMMEANS=TABLES(group*days_of_training) Compare(days_of_training) 
adj(BONFERRONI).

i. This will allow us to examine mean differences between each group 
across the three lengths of training.

10. After typing the above /EMMEANS syntax, press the green  button to perform 
the statistical analysis.

Syntax for SPSS two- way factorial ANOVA

UNIANOVA strength BY group days_of_training
/METHOD=SSTYPE(3)
/INTERCEPT=INCLUDE
/PLOT=PROFILE(days_of_training*group)
/EMMEANS=TABLES(group) COMPARE ADJ(BONFERRONI)
/EMMEANS=TABLES(days_of_training) COMPARE ADJ(BONFERRONI)
/EMMEANS=TABLES(group*days_of_training) Compare(group) adj(BONFERRONI)
/EMMEANS=TABLES(group*days_of_training) Compare(days_of_training) adj 
(BONFERRONI)
/PRINT=DESCRIPTIVE
/CRITERIA=ALPHA(.05)
/DESIGN=group days_of_training group*days_of_training.

Interpreting the output (two- way factorial ANOVA)

As shown in Table 4.2, SPSS will first show the Between- Subjects Factors. In this 
example, we can see that for the group factor there are three levels (control, placebo, and 
supplement) and for the length of training factor there are also three levels (5, 10, and 15 
days). SPSS also indicates the number of subjects per level shown under the “N” column.
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 As shown in Table 4.3, the Tests of Between- Subjects Effects table is generated 
which will indicate whether or not there are significant main effects for the group 
and days of training variables and/or a significant group × days of training inter-
action. Thus, we find no main effect for group (p = 0.233), but a significant main 
effect for days of training (p = 0.000, as shown) and a significant group × days of 
training interaction (p = 0.002). Since we have a significant interaction, we want to 
perform follow- up testing to determine where the mean differences exist.
 As shown in Table 4.4, SPSS generates the Estimated Marginal Means table for 
the group × days of training interaction. It is these means and standard error values 
that you will use when reporting the data.
 As shown in Table 4.5, SPSS generates the Univariate Tests table which indicates 
whether or not there is a significant overall F- ratio for the three length of training 
groups. This table is similar to the one- way ANOVA table and, therefore, we can see 
that for 5 and 15 days there are significant overall F- ratios (p = 0.037 and 0.003). There-
fore, now we can look at the pairwise comparisons table. (Note: The Univariate Tests 
table appears after the pairwise comparisons table in the SPSS output.)
 As shown in Table 4.6, SPSS produces the Pairwise Comparisons table which is 
generated from the syntax /EMMEANS=TABLES(group*days_of_training) Compare 

Table 4.3  Estimated marginal means, reprint courtesy of International Business Machines 
Corporation

Dependent Variable: Strength Index

Source Type III sum of squares df. Mean square F Sig.

Corrected Model 2934.400a 8 366.800 5.777 .000
Intercept 57245.000 1 57245.000 901.654 .000
group 192.933 2 96.467 1.519 .233
days_of_training 1418.133 2 709.067 11.168 .000
group*days_of_training 1323.333 4 330.833 5.211 .002
Error 2285.600 36 63.489
Total 62465.000 45
Corrected Total 5220.000 44

Source: © International Business Machines Corporation.

Note
a R Squared = .562 (Adjusted R Squared = .465).

Table 4.2  Tests of between-subject effects, reprint courtesy of International Business Machines 
Corporation

Value label N

Group 1.00 control 15
2.00 placebo 15
3.00 SUPP 15

Length of training 1.00 5 days 15
2.00 10 days 15
3.00 15 days 15

Source: © International Business Machines Corporation.



20  ANOVA analysis

(group) adj(BONFERRONI). Here, you are determining which groups are statistically 
different from one another for each length of training. As we can see, for 5 days of 
training, the mean values for the control versus the supplement groups are significantly 
different from each other (p = 0.042). Similarly, we find that for the 15 days of training, 
there are significant mean differences between the placebo and supplement groups. It 
should be noted, that the mean differences are calculated in two ways thus the reason 
why one value has the negative sign and the other value is positive.
 As shown in Table 4.6, SPSS has produced another Univariate Tests table. This was 
generated from the /EMMEANS=TABLES(group*days_of_training) Compare(days_of_
training) adj(BONFERRONI) syntax. As mentioned above for Table 4.5, this is a one- 
way ANOVA table which will indicate if there is a significant overall F- ratio for any of 

Table 4.4 Univariate tests, reprint courtesy of International Business Machines Corporation
1. Group* Length of Training
Estimates
Dependent Variable: Strength Index

Group Length of training Mean Std. error 95% confidence interval

Lower bound Upper bound

control  5 days 34.000 3.563 26.773 41.227
10 days 35.600 3.563 28.373 42.827
15 days 37.000 3.563 29.773 44.227

placebo  5 days 30.800 3.563 23.573 38.027
10 days 31.800 3.563 24.573 39.027
15 days 37.000 3.563 29.773 44.227

SUPP  5 days 21.000 3.563 13.773 28.227
10 days 40.800 3.563 33.573 48.027
15 days 53.000 3.563 45.773 60.227

Source: © International Business Machines Corporation.

Table 4.5  Pairwise comparisons, reprint courtesy of International Business Machines 
Corporation

Dependent Variable: Strength Index

Length of training Sum of squares df. Mean square F Sig.

 5 days Contrast 458.800 2 229.400 3.613 .037
Error 2285.600 36 63.489

10 days Contrast 204.133 2 102.067 1.608 .214
Error 2285.600 36 63.489

15 days Contrast 853.333 2 426.667 6.720 .003
Error 2285.600 36 63.489

Source: © International Business Machines Corporation.

Note
Each F tests the simple effects of Group within each level combination of the other effects shown. These 
tests are based on the linearly independent pairwise comparisons among the estimated marginal means.
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the three groups. Here, we see that the supplement group has an overall F- ratio that is 
less than p = 0.05. Therefore, we can continue on to the Pairwise Comparisons table.
 As shown in Table 4.8, the Pairwise Comparisons table now provides information 
to determine which length of training statistically differs from one another for each 
group. Since we had a significant overall F- ratio for the supplement group, we 
examine the comparisons between length of training for the supplement group only.
 As shown in Figure 4.1, SPSS produces a plot of the data. This was generated 
from the /PLOT=PROFILE(days_of_training*group) syntax. This graphical repres-
entation of the data typically appears at the end of the output display.

Sample write- up two- way factorial

The 3 × 3 factorial ANOVA revealed a significant group × training interaction 
[F(4,36) = 5.21; p = 0.002] for strength. In addition, there were no main effects for 
group [F(2,36) = 1.52; p = 0.23], but a main effect for training [F(2,36) = 11.17; 
p < 0.001]. The main effect for training was not interpreted due to the significant 
interaction (2), because the data cannot be collapsed across either factor. The fol-
low- up analyses indicated that for the 5 days of training condition the supplement 
group had significantly lower strength index than the control group. For the 15-day 
condition, however, the supplement group scored significantly higher than the 
control and placebo groups.

Using SPSS pulldown menu for three- way factorial ANOVA

 1. Click Analyze, then move cursor to General Linear Model, and then move 
cursor to Univariate and then left click.

 2. Click Group, then move to the Fixed Factor(s) box.
 3. Click Days_of_training, then move to the Fixed Factor(s) box.
 4. Click Gender, then move to the Fixed Factor(s) box.
 5. Click Strength, then move to the Dependent Variable box.

Table 4.7  Pairwise comparisons, reprint courtesy of International Business Machines 
Corporation

Dependent Variable: Strength Index

Group Sum of squares df. Mean square F Sig.

control Contrast 22.533  2 11.267 .177 .838
Error 2285.600 36 63.489

placebo Contrast 110.800  2 55.400 .873 .427
Error 2285.600 36 63.489

SUPP Contrast 2608.133  2 1304.067 20.540 .000
Error 2285.600 36 63.489

Source: © International Business Machines Corporation.

Note
Each F tests the simple effects of Length of Training within each level combination of the other effects 
shown. These tests are based on the linearly independent pairwise comparisons among the estimated 
marginal means.
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 6. Click Plots.

a. Select group from the Factors box and move to the Separate Lines box.
b. Select days_of_training from the Factors box and move to the Horizontal 

Axis box.
c. Select gender from the Factors box and move to the Separate Plots.
d. Click Add.
e. Click Continue.

 7. Click Options (in newer versions of SPSS you will need to click the EM Means 
box).

a. Select group from the Factor(s) and Factor Interactions box and then hold 
down the Shift key and then click group*days_of_training*gender variable.

i. This will highlight all the variables and then you will be able to move 
them into the Display Means for box.

b. Check the box for Compare main effects.
c. Choose Bonferroni from the pulldown menu for Confidence interval 

adjustment.
d. In the Display box, check the box for Descriptive statistics.
e. Click Continue.
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Figure 4.1  Estimated marginal means of strength index.

Source: © International Business Machines Corporation.
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 8. Click Paste.
 9. You will see the entire syntax for this statistical procedure which looks like the 

syntax below.
10. Before performing the analysis, however, you need to add a line of syntax which 

will provide the follow- up test for the significant two- way interaction since, in 
this example, there will be no significant three- way interaction.

a. /EMMEANS=TABLES(group*days_of_training) Compare(group) adj 
(BONFERRONI).

b. /EMMEANS=TABLES(group*days_of_training) Compare(days_of_training) 
adj(BONFERRONI).

c. After typing the above /EMMEANS syntax, press the green  button to 
perform the statistical analysis.

Syntax for three- way factorial ANOVA

UNIANOVA strength BY group days_of_training gender
/METHOD=SSTYPE(3)
/INTERCEPT=INCLUDE
/PLOT=PROFILE(days_of_training*group group*gender)
/EMMEANS=TABLES(group) COMPARE ADJ(BONFERRONI)
/EMMEANS=TABLES(days_of_training) COMPARE ADJ(BONFERRONI)
/EMMEANS=TABLES(gender) COMPARE ADJ(BONFERRONI)
/EMMEANS=TABLES(group*days_of_training) Compare(group) adj(BONFERRONI)
/EMMEANS=TABLES(group*days_of_training) Compare(days_of_training) adj 

(BONFERRONI)
/PRINT=DESCRIPTIVE
/CRITERIA=ALPHA(.05)
/DESIGN=group days_of_training gender group*days_of_training group*gender days_ 

of_training*gender group*days_of_training*gender.

Interpreting the output (three- way factorial ANOVA)

As shown in Table 4.9, SPSS will first show the Between- Subjects Factors. In this 
example, we can see that gender is added as another factor in addition to the group 
and length of training factors. This additional factor (i.e., gender) changes the two- 
way factorial ANOVA into a three- way factorial ANOVA.
 As shown in Table 4.10, the Tests of Between- Subjects Effects table is generated 
which will indicate whether or not there are significant main effects for group, 
days of training, and gender. In addition, there are the results of the two- way 
ANOVA and then the three- way ANOVA. First, examining the overall F- ratio for 
the three- way ANOVA (group × days of training × gender) indicates no statistical 
significance (p = 0.914). Since there is no significant three- way ANOVA, we now 
examine the two- way ANOVAs (days of training × gender; group × gender; and 
group × days of training). Here, the only interaction that is statistically significant 
is the group × days of training (p = 0.003). At this point, we want to perform the 
follow- up analyses for this interaction. We can report the main effects for group, 
days of training, and gender in our results section for completeness, but focus on 
the significant group × days of training.
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 As shown in Table 4.11, SPSS generated the Estimated Marginal Means table for 
the group × days of training interaction. It is these means and standard error values 
that you will use when reporting the data.
 As shown in Table 4.12, SPSS generates the Univariate Tests table which indicates 
whether or not there is a significant overall F- ratio for the three length of training 
groups. This table is similar to the one- way ANOVA table and, therefore, we can see 
that for 5 and 15 days there are significant overall F- ratios (p = 0.038 and 0.005). 
Therefore, now we can look at the pairwise comparisons table. (Note: The Univari-
ate Tests table appears after the Pairwise Comparisons table in the SPSS output.)
 As shown in Table 4.13, SPSS produces the Pairwise Comparisons table which is 
generated from the /EMMEANS=TABLES(group*days_of_training) Compare(group) 

Table 4.10  Estimated marginal means, reprint courtesy of International Business Machines 
Corporation

Tests of Between-Subjects Effects
Dependent Variable: Strength Index

Source Type III sum of 
squares

df. Mean square F Sig.

Corrected Model 3364.833a 17 197.931 2.881 .007
Intercept 55613.426 1 55613.426 809.395 .000
group 158.896 2 79.448 1.156 .330
days_of_training 1443.785 2 721.893 10.506 .000
Gender 149.833 1 140.833 2.050 .164
group*days_of_training 1419.926 4 354.981 5.166 .003
group*gender 155.400 2 77.700 1.131 .338
days_of_training*gender 68.422 2 34.211 .498 .613
group*days_of_training*gender 65.778 4 16.444 .239 .914
Error 1855.167 27 68.710
Total 62465.000 45
Corrected Total 5220.000 44

Source: © International Business Machines Corporation.

Note
a R Squared = .645 (Adjusted R Squared = .421).

Table 4.9  Tests of between-subjects effects, reprint courtesy of 
International Business Machines Corporation

Value label N

Group 1.00 control 15
2.00 placebo 15
3.00 SUPP 15

Length of training 1.00  5 days 15
2.00 10 days 15
3.00 15 days 15

Gender 0.00 Male 22
1.00 Female 23

Source: © International Business Machines Corporation.
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adj(BONFERRONI). Here, you are determining which groups are statistically 
different from one another for each length of training. As we can see, for 5 days of 
training, the mean values for the control versus the supplement groups are NOT 
significantly different from each other (p = 0.055) as the p- value designated for statis-
tical significance is p ≤ 0.05. For the 15 days of training, there are significant mean 
differences between the control and supplement groups and the placebo as well as 
between the placebo and supplement groups. It should be noted, that the mean 
differences are calculated in two ways thus the reason why one value has the neg-
ative sign and the other value is positive.

Table 4.11 Univariate tests, reprint courtesy of International Business Machines Corporation
Estimated Marginal Means
Group*Length of Training

Estimates
Dependent Variable: Strength Index

Group Length of 
training

Mean Std. error 95% confidence interval

Lower bound Upper bound

control  5 days 33.667 3.783 25.904 41.430
10 days 35.083 3.783 27.320 42.846
15 days 37.333 3.783 29.570 45.096

placebo  5 days 31.833 3.783 24.070 39.596
10 days 32.583 3.783 24.820 40.346
15 days 37.083 3.783 29.320 44.846

SUPP  5 days 20.250 3.783 12.487 28.013
10 days 41.333 3.783 33.570 49.096
15 days 53.750 3.783 45.987 61.513

Source: © International Business Machines Corporation.

Table 4.12  Pairwise comparisons, reprint courtesy of International Business Machines 
Corporation

Univariate Tests
Dependent Variable: Strength Index

Length of training Sum of squares df. Mean square F Sig.

 5 days Contrast 508.067 2 254.033 3.697 .038
Error 1855.167 27 68.710

10 days Contrast 195.000 2 97.500 1.419 .259
Error 1855.167 27 68.710

15 days Contrast 875.756 2 437.878 6.373 .005
Error 1855.167 27 68.710

Source: © International Business Machines Corporation.

Note
Each F tests the simple effects of Group within each level combination of the other effects shown. These 
tests are based on the linearly independent pairwise comparisons among the estimated marginal means.
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 As shown in Table 4.14, SPSS has produced another Univariate Tests table. This was 
generated from the /EMMEANS=TABLES(group*days_of_training) Compare(days_of_
training) adj(BONFERRONI) syntax. As mentioned in the previous example, this table 
indicates whether or not there is a significant overall F- ratio for the three levels of 
group. In this example, the supplement group is the only one that has a significant 
overall F- ratio (p = 0.000; as shown). It should be noted, that when reporting p-values 
this small, a conventional method is to write p < 0.001.
 As shown in Table 4.15, the Pairwise Comparison table now provides informa-
tion to determine which length of training statistically differs from one another 
for each group. Since we have a significant overall F- ratio for the supplement 
group, we examine the comparisons between length of training for the supple-
ment group only.

Sample write- up three- way factorial

The three- way factorial ANOVA revealed no significant group × training × gender 
interaction [F(4,27) = 0.24; p = 0.91] for strength. In addition, there were no signi-
ficant (p > 0.05) gender × group or gender × training interactions. When the data were 
collapsed across gender, the two- way ANOVA revealed a significant group × training 
[F(4,27) = 5.17; p = 0.003]. It should be noted, however, that there were no signi-
ficant main effects for group and gender, but a significant main effect for training 
[F(2,27) = 10.51; p < 0.001]. This main effect for training was not interpreted due to 
the significant interaction (2). The follow- up analyses indicate that for the 5 days of 
training condition the supplement group had significantly lower strength than the 
control and placebo groups, whereas this for the 15 days of training condition the 
supplement group had significantly higher (p < 0.05) strength than the two other 
groups.

Table 4.14  Pairwise comparisons, reprint courtesy of International Business Machines 
Corporation

Univariate Tests
Dependent Variable: Strength Index

Group Sum of squares df. Mean square F Sig.

control Contrast 32.822  2 16.4111 .239 .789
Error 1855.167 27 68.710

placebo Contrast 77.400  2 38.700 .563 .576
Error 1855.167 27 68.710

SUPP Contrast 2753.489  2 1376.744 20.037 .000
Error 1855.167 27 68.710

Source: © International Business Machines Corporation.

Note
Each F tests the simple effects of Length of Training within each level combination of the other effects 
shown. These tests are based on the linearly independent pairwise comparisons among the estimated mar-
ginal means.
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5 Mixed or between- within 
factorial ANOVA

Introduction

Thus far we have discussed factorial ANOVA (one-, two-, or three- way) in which 
the dependent variable(s) was measured at a single time point. In Chapter 3 we 
briefly reviewed one- way repeated-measures ANOVA. Therefore, in the present 
chapter, we will combine components of both factorial and repeated- measures 
ANOVA which will allow us to examine different levels of one (or more) inde-
pendent variable(s) in which each subject is measured on two (or more) occasions. 
This approach has different names, but typically it is called a mixed factorial 
ANOVA, or between- within ANOVA.

Research questions

In many kinesiology/exercise science studies, the goal is to examine the effect of a 
perturbation over several time points. For example, you may want to examine the 
effects of an 8-week endurance training intervention on time to fatigue. Therefore, 
you test all subjects (both control and experimental groups) before the intervention 
(pretest), at week 4, and at the end of the intervention (week 8). In this example you 
have a 2 [group: control or experimental] × 3 [time: pretest, week 4, and week 8] 
mixed factorial ANOVA in which the between- subjects factor is “group” and 
within- subjects factor is “time.” Alternatively, you may want to examine the differ-
ences in electromyographic amplitude for the three superficial quadriceps femoris 
muscles (vastus lateralis VL, vastus medialis VM, and rectus femoris RF ) in the same 
participants, but for two different modes of exercise. In this scenario, you would 
perform a 2 [mode: treadmill and cycle ergometry] × 3 [muscles: VL, VM, and RF] 
mixed factorial ANOVA in which the between- subjects factor is “mode” and the 
within- subjects factor is “muscles.”

Review of mixed factorial ANOVA

The assumptions for a mixed factorial ANOVA are the same as for those of one- 
factor between-subjects ANOVA such as homogeneity of variance, normality, and 
independence of observation (for the between- subject independent variable). In addi-
tion, since we are also examining a within- subjects factor, we need to also examine 
compound symmetry which is assessed by the sphericity assumption when the 
repeated measures independent variables have three or more levels. The sphericity 
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assumption is rooted in matrix algebra and essentially focuses on equal variance 
between a set of difference scores. The mathematical background related to discuss-
ing the sphericity assumption is beyond the objectives of this textbook, however, 
SPSS output provides the Mauchly’s Sphericity test when performing repeated- 
measures ANOVA. The Mauchly’s Sphericity test, therefore, is an indication of vari-
ance homogeneity. If this test is significant (p < 0.05) then we have violated the 
sphericity assumption, whereas a nonsignificant test indicates that the assumption 
has been met.

Mixed factorial ANOVA (example 1)

The example below focuses on the following research question “Does treatment 
with a supplement increase running time to fatigue?” Therefore, the research design 
is a 3 [group: control, placebo, and supplement] × 2 [time: pretest and post- test] with 
fatigue time as the dependent variable.

Using SPSS pulldown menu for mixed factorial ANOVA (example 1)

1. Click Analyze, then move the cursor to General Linear Model, and then move 
the cursor to Repeated Measures and left click.

a. In the window that opens you will see the default “factor1.”
b. You can change this label or leave as the default “factor1.”

i. For our purposes, we will change this to “Time.”
ii. Then enter 2 for the number of levels, since we have two time points 

(Pre and Post).
iii. Click Add.
 iv. Click Define.

2. Click Group, then move it over to the Between- Subjects Factor(s) box.
3. Click Pre_Fatigue_Time.

a. Hold down the Shift key.
b. Click on Post_Fatigue_Time (both Pre and Post variables should be 

highlighted).
c. Move these two variables to the Within- Subjects Variables box.

4. Click Plots.

a. Click Group and then move to Separate Lines box.
b. Click Time and then move to Horizontal Axis box.
c. Click Add.
d. Click Continue.

5. Click Post Hoc.

a. Click Group, and then move to the Post Hoc Tests for box.
b. Click the box next to Tukey (do not click the box next to Tukey’s-b).
c. Click Continue.



34  ANOVA analysis

6. Click Options (in newer versions of SPSS, items “a–e” below are under the “EM 
Means” button).

a. Click Group.
b. Hold down the Shift key.
c. Click Group*Time.

i. You should have all 3 variables highlighted.
ii. Move them to the Display means for box.

d. Click the box Compare main effects.
e. From the Confidence interval adjustment pulldown menu select Bonferroni.
f. Click the box next to Descriptive statistics (this is under “Options” in newer 

versions of SPSS).
g. Click Continue.

7. Click Paste.

a. A syntax window will open (if one is not already opened).
b. You will need to include the following /EMMEANS syntax, because they 

are not derived from the pulldown menu.

i. /EMMEANS=TABLES(Group*Time) COMPARE(Group) ADJ (Bonferroni).

 1.  This will allow us to examine mean differences between each group 
for each of the two time points.

ii. /EMMEANS=TABLES(Group*Time) COMPARE(Time) ADJ(Bonferroni).

 1.  This will allow us to examine mean differences between the two 
time points for each of the three groups.

iii. The determination of which syntax line to use is dependent on the 
research question. It is, however, appropriate to have two separate 
research questions which would require using both syntax lines.

c. After typing the above /EMMEANS syntax, press the green  button to 
perform the statistical analysis.

Syntax for SPSS for example 1

GLM Fatigue_Time_pre Fatigue_Time_post BY Group
/WSFACTOR=Time 2 Polynomial
/METHOD=SSTYPE(3)
/POSTHOC=group(TUKEY)
/PLOT=PROFILE(Time*Group)
/EMMEANS=TABLES(Group) COMPARE ADJ(BONFERRONI)
/EMMEANS=TABLES(Time) COMPARE ADJ(BONFERRONI)
/EMMEANS=TABLES(Group*Time)
/EMMEANS=TABLES(Group*Time) COMPARE(Group) ADJ(Bonferroni)
/EMMEANS=TABLES(Group*Time) COMPARE(Time) ADJ(Bonferroni)
/PRINT=DESCRIPTIVE
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/CRITERIA=ALPHA(.05)
/WSDESIGN=Time
/DESIGN=Group.

Interpreting the output for SPSS for example 1

As shown in Table 5.1, SPSS generates the Within- Subjects Factors table which are 
the two time points, whereas the Between- Subjects Factors table indicates the three 
groups. Therefore, all groups were tested at both time points.
 As shown in Table 5.2, SPSS generates the Tests of Within- Subjects Effects table 
which provides information about whether or not there was a significant interaction 
and/or main effect for time. In this example, there was a significant group × time 
interaction (p = 0.000, as shown). In addition, there was a significant main effect for 
time (p = 0.000, as shown). However, because of the significant interaction, we only 
report the main effect for time, but do not conduct follow- up testing.
 As shown in Table 5.3, the Tests of Between- Subjects Effects indicates that there 
is a main effect for group (p = 0.030). However, because of the significant inter-
action, we only report the main effect for group, but do not conduct follow- up 
testing.
 As shown in Table 5.4, prior to the results of the pairwise comparisons SPSS 
provides the mean and standard error values for each group and time point. 
These are the values to use in when writing your results and/or generating graphs/
tables.
 As shown in Table 5.5, the Univariate Tests table is generated which indicates 
that there was a significant overall F- ratio for the second time point.
 As shown in Table 5.6, the Pairwise Comparisons table shows that for the second 
time point, there are significant mean differences between the three groups. Keep in 
mind that this table was generated from the /EMMEANS=TABLES(Group*Time) 
COMPARE(Group) ADJ(Bonferroni) syntax line.
 As shown in Table 5.7, another pairwise comparisons table is generated by SPSS 
from the /EMMEANS=TABLES(Group*Time) COMPARE(Time) ADJ(Bonferroni) 
syntax line. In this table, the comparisons are between the two time points for each 
group.

Table 5.1  Within-subjects factors, reprint courtesy of International Business Machines 
Corporation

Within-Subjects Factors Between-Subjects Factors
Measure: MEASURE_1 

Value label N

group  .00 control 10
1.00 placebo 10
2.00 SUPP 10

Time Dependent variable

1 Fatigue_Time
2 Fatigue_Time_post

Source: © International Business Machines Corporation.
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Table 5.3  Tests of between-subjects effects, reprint courtesy of International Business Machines 
Corporation

Tests of Between-Subjects Effects
Measure: MEASURE_1
Transformed Variable: Average

Source Type III sum of squares df. Mean square F Sig.

Intercept 70402.246 1 70402.246 6387.545 .000
group 88.410 2 44.205 4.011 .030
Error 297.589 27 11.022

Source: © International Business Machines Corporation.

Table 5.4 Group*Time, reprint courtesy of International Business Machines Corporation
Group*Time
Estimates
Dependent Variable: Strength Index

Group Time Mean Std. error 95% confidence interval

Lower bound Upper bound

control 1 33.170 .687 31.760 34.580
2 34.275 .858 32.514 36.036

placebo 1 32.500 .687 31.090 33.910
2 33.714 .858 31.953 35.475

SUPP 1 33.019 .687 31.609 34.429
2 38.849 .858 37.088 40.610

Source: © International Business Machines Corporation.

Table 5.5 Univariate tests, reprint courtesy of International Business Machines Corporation
Univariate Tests
Measure: MEASURE_1

Time Sum of squares df. Mean square F Sig.

1 Contrast 2.470  2 1.235 .262 .772
Error 127.464 27 4.721

2 Contrast 158.681  2 79.341 10.769 .000
Error 198.929 27 7.368

Source: © International Business Machines Corporation.

Note
Each F tests the simple effects of group within each level combination of the other effects shown. These 
tests are based on the linearly independent pairwise comparisons among the estimated marginal means.
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Sample write- up for example 1

The 2 × 3 mixed factorial ANOVA revealed a significant group × time interaction 
[F(2,27) = 34.09; p < 0.001] for fatigue time. In addition, there were significant main 
effects for group [F(2,27) = 4.01; p = 0.03] and time [F(1,27) = 103.75; p < 0.001], 
however, these main effects were not interpreted given the significant interaction. 
The follow- up analyses indicate no significant mean differences between groups in 
the pretest fatigue time, but significant mean differences in post- test fatigue time. As 
a result, the supplement group had significantly higher post- test fatigue times com-
pared to the control and placebo groups.

Mixed factorial ANOVA (example 2)

The example below focuses on the following research question “Is there a mean differ-
ence in EMG amplitude in the thigh muscles between treadmill exercise and cycle 
ergometry?” Therefore, the design is a 2 [mode: treadmill and cycle ergometry] × 3 
[muscles: VL, VM, and RF] with EMG amplitude as the dependent variable.

Using SPSS pulldown menu for mixed factorial ANOVA (example 2)

1. Click Analyze, then move the cursor to General Linear Model, and then move 
the cursor to Repeated Measures and left click.

a. In the window that opens you will see the default “factor1.”
b. You can change this label or leave as the default “factor1.”

i. For our purposes, we will change this to “EMG_Amplitude.”
ii. Then enter 3 for the number of levels, since we have three muscles 

(vastus lateralis, rectus femoris, and vastus medialis).
iii. Click Add.
 iv. Click Define.

2. Click Mode_of_Exercise, then move it over to the Between- Subjects Factor(s) box.
3. Click Peak_EMG_Amplitude_VL.

a. Hold down the Shift key.
b. Click on Peak_EMG_Amplitude_VM (all three variables should be 

highlighted).
c. Move these three variables to the Within- Subjects Variables box.

4. Click Plots.

a. Click Mode_of_Exercise and then move to Separate Lines box.
b. Click EMG_Amplitude and then move to Horizontal Axis box.
c. Click Add.
d. Click Continue.

5. Click Options (in newer versions of SPSS, items “a–e” below are under the “EM 
Means” button).

a. Click Mode_of_Exercise.
b. Hold down the Shift key.
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c. Click Mode_of_Exercise*EMG_Amplitude.

i. You should have all three variables highlighted.
ii. Move them to the Display means for box.

d. Click the box Compare main effects.
e. From the Confidence interval adjustment pulldown menu select Bonferroni.
f. Click the box next to Descriptive statistics.
g. Click Continue.

6. Click Paste.

a. A syntax window will open (if one is not already opened).
b. You will need to include the following /EMMEANS syntax, because they 

are not derived from the pulldown menu.

i. /EMMEANS=TABLES(Mode_of_Exercise*EMG_Amplitude) 
COMPARE(Mode_of_Exercise) ADJ(BONFERRONI).

 1.  This will allow us to examine mean differences between each mode 
of exercise for each of the three muscles.

ii. /EMMEANS=TABLES(Mode_of_Exercise*EMG_Amplitude) 
COMPARE(EMG_Amplitude) ADJ(BONFERRONI).

 1.  This will allow us to examine mean differences between the three 
muscles for each mode of exercise.

c. After typing the above /EMMEANS syntax, press the green  button to 
perform the statistical analysis.

Syntax for SPSS for example 2

GLM Peak_EMG_Amplitude_VL Peak_EMG_Amplitude_RF Peak_EMG_Amplitude_ 
VM BY Mode_of_Exercise
/WSFACTOR=EMG_Amplitude 3 Polynomial
/METHOD=SSTYPE(3)
/PLOT=PROFILE(EMG_Amplitude*Mode_of_Exercise)
/EMMEANS=TABLES(Mode_of_Exercise) COMPARE ADJ(BONFERRONI)
/EMMEANS=TABLES(EMG_Amplitude) COMPARE ADJ(BONFERRONI)
/EMMEANS=TABLES(Mode_of_Exercise*EMG_Amplitude) COMPARE(Mode_of_ 
Exercise) ADJ(BONFERRONI)
/PRINT=DESCRIPTIVE
/CRITERIA=ALPHA(.05)
/WSDESIGN=EMG_Amplitude
/DESIGN=Mode_of_Exercise.

Interpreting the output for SPSS for example 2

As shown in Table 5.8, SPSS generates the Within- Subjects Factors table which are 
the three muscles (vastus lateralis #1, rectus femoris #2, and vastus medialis #3), 
whereas the Between- Subjects Factors table indicates the two modes of exercise 
(treadmill running and cycle ergometry). Therefore, the electromyographic (EMG) 
amplitude was measured from the three muscles during treadmill running as well as 
cycle ergometry for all subjects.
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 As shown in Table 5.9, the Mauchly’s Test of Sphericity table indicates that we have 
not met this assumption since the test is statistically significant (p- value is 0.042).
 As shown in Table 5.10, the Tests of Between- Subjects Effects indicates that there is 
a main effect for EMG amplitude (i.e., muscles) and a significant interaction. Due to the 
significant Mauchly’s Test of Sphericity the investigator would use the “Greenhouse- 
Geisser” row to determine significance rather than the “Sphericity Assumed” row.
 As shown in Table 5.11, the Tests of Between- Subjects Effect indicates that there 
was no main effect for mode of exercise.
 As shown in Table 5.12, prior to the results of the pairwise comparisons SPSS 
provides the mean and standard error values for each group and muscle. These are 
the values to use in when writing your results and/or generating graphs/tables.

Table 5.8  Within-subjects factors, reprint courtesy of International Business Machines 
Corporation

Within-Subjects Factors
Measure: MEASURE_1

EMG_Amplitude Dependent variable

1 Peak_EMG_Amplitude_VL
2 Peak_EMG_Amplitude_RF
3 Peak_EMG_Amplitude_VM

Within-Subjects Factors

Value label N

Mode_of_Exercise  .00 Treadmill 8
1.00 Cycle

Ergometry
7

Source: © International Business Machines Corporation.

Table 5.9  Mauchly’s test of sphericity, reprint courtesy of International Business Machines 
Corporation

Mauchly’s Test of Sphericitya

Measure: MEASURE_1

Within subjects 
effect

Mauchly’s W Approx. 
Chi-Square

df Sig. Epsilonb

Greenhouse-
Geisser

Hunh-
Feldt

Lower-
bound

EMG_Amplitude .590 6.327 2 .042 .709 .832 .500

Source: © International Business Machines Corporation.

Notes
Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent 
variables is proportional to an identity matrix.
a Design: Intercept + Mode_of_Exercise.
 Within Subjects Design: EMG_Amplitude
b  May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are 

displayed in the Tests of Within-Subjects Effects table.
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Table 5.11  Tests of between-subjects effects, reprint courtesy of International Business Machines 
Corporation

Tests of Between-Subjects Effects
Measure: MEASURE_1
Transformed Variable: Average

Source Type III sum of squares df. Mean square F Sig.

Intercept 2293771.659  1 229771.659 213.478 .000
Mode_of_Exercise 35038.905  1 35038.905 3.261 .0.94
Error 139681.851 13 10744.758

Source: © International Business Machines Corporation.

Table 5.12 Estimates, reprint courtesy of International Business Machines Corporation
Estimates
Measure: MEASURE_1

Mode_of_ 
Exercise

EMG_ 
Amplitude

Mean Std. error 95% confidence interval

Lower bound Upper bound

Treadmill VL 319.040 19.870 276.114 361.967
RF 264.337 23.702 213.131 315.543
VM 179.346 23.725 128.091 230.601

Cycle Ergometry VL 195.986 21.242 150.095 241.876
RF 250.668 25.339 195.927 305.410
VM 148.271 25.363  93.477 203.064

Source: © International Business Machines Corporation.

Table 5.13 Univariate tests, reprint courtesy of International Business Machines Corporation
Univariate Tests
Measure: MEASURE_1

EMG_Amplitude Sum of squares df. Mean square F Sig.

1 Contrast 56531.522  1 56531.522 17.898 .001
Error 41061.270 13 3158.559

2 Contrast 597.502  1 697.502 .155 .700
Error 584.044 13 4494.465

3 Contrast 3605.190  1 3605.190 .801 .387
Error 58539.380 13 4503.029

Source: © International Business Machines Corporation.

Note
Each F tests the simple effects of Mode_of_Exercise within each level combination of the other effects 
shown. These tests are based on the linearly independent pairwise comparisons among the estimated 
marginal means.
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 As shown in Table 5.13, the Univariate Tests table is generated which indicates 
that there was a significant overall F- ratio for the first muscle (vastus lateralis).
 As shown in Table 5.14, the Pairwise Comparisons table shows that for the first 
muscle (vastus lateralis), there are significant mean differences between the two 
modes of exercise. Keep in mind that this table was generated from the  
/EMMEANS=TABLES(Mode_of_Exercise*EMG_Amplitude) COMPARE(Mode_
of_Exercise) ADJ(BONFERRONI) syntax line.

Sample write- up for example 2

The 2 × 3 mixed factorial ANOVA revealed a significant interaction 
[F(1.4,18.4) = 18.278; p < 0.001] and a significant main effect for EMG amplitude 
[F(1.4,18.4) = 61.9; p < 0.001], but not a significant main effect for mode 
[F(1,13) = 3.261; p = 0.094]. For the follow- up test we examined mean differences in 
EMG amplitude between treadmill exercise and cycle ergometry for each muscle. For 
the VL muscle, therefore, we found significant mean differences (treadmill: 
319 ± 20 µVrms vs. cycle ergometry: 196 ± 21 µVrms; p = 0.01), but no significant mean 
differences between modes for the rectus femoris (treadmill: 264 ± 23 µVrms vs. cycle 
ergometry: 251 ± 25 µVrms; p = 0.700) and vastus medialis (treadmill: 179 ± 24 µVrms vs. 
cycle ergometry: 148 ± 25 µVrms; p = 0.387) muscles.



6 Analysis of covariance (ANCOVA)

Introduction

Scientists want to account for factors other than the independent variable which 
may influence their dependent variable. For example, if the investigator is exam-
ining muscular strength in young adults their inclusion criteria may restrict parti-
cipants to those who are between 20 and 30 years old and, therefore, the 
investigator would exclude anyone outside this age range. There are situations, 
however, in which the investigator may not be able to control for certain factors. 
For example, the investigator may be conducting a study which examines the 
effects of caffeine on endurance performance, yet most people consume some 
amount of caffeine daily. So what does the investigator do? One option may be to 
have each subject complete a caffeine consumption questionnaire and then statisti-
cally adjust for the effects of caffeine consumption in their analysis. As a result, 
the investigator has to use daily caffeine consumption as a covariate thus reducing 
the error variability in their study. This type of statistical procedure is called 
Analysis of Covariance (ANCOVA).
 ANCOVA should not be used arbitrarily to replace a sloppy research design 
which lacks the appropriate experimental control. Therefore, a strong justification 
needs to be presented for why each covariate is going to be used. In addition, the use 
of multiple covariates is not advisable (i.e., more than three), because it makes the 
interpretation of the results more complex.

Research questions

The types of research questions for ANCOVA are similar to studies we have already 
described in previous ANOVA chapters. The difference here, however, is that there 
may be a variable which is influencing the dependent variable and that is difficult or 
impossible to control. It is important to reiterate that the implementation of 
ANCOVA should be used judiciously with strong justification. For example, if the 
investigator wanted to study upper body strength on a group of volleyball players, 
they might assume that the player’s strength would be related, in part, to any 
strength training regimen the athlete has been performing. In this case, the investiga-
tor would ask each subject a question such as, “In the last 6 months, how many 
hours per week have you lifted weights for your upper body?” This information, 
therefore, will provide the investigator an index of each subject’s upper body 
strength training regimen. That is, since the investigator is interested in measuring 
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upper body strength, they do not want the athlete’s past (or current) training 
regimen to influence the results by adding more variability (i.e., error) to the 
dependent variable.

Review of ANCOVA

ANCOVA works by “holding constant” the covariate across group means. That is, 
for a dependent variable, each group mean has the variance associated with the cov-
ariate accounted for in the model separately, so that all group means adjusted for 
the influence of the covariate. This “new” mean for each group is called the adjusted 
group mean.
 The assumptions of ANOVA (see previous chapters) apply to ANCOVA with two 
additional assumptions. First, we need to make sure that there is a linear relation-
ship between the dependent variable and the covariate. This is critical, because the 
adjusted means are derived from linear regression and, therefore, if the relationship 
between the dependent variable and covariate is curvilinear then adjusted means will 
be invalid. A simple approach to determining if there is a linear relationship between 
the dependent variable and covariate is to create a scatterplot to visually inspect the 
relationship. A second assumption of ANCOVA is homogeneity of regression. The 
purpose of this assumption is to determine if all groups have similar regression 
slopes (i.e., similar direction) for the dependent variable and covariate. The assump-
tion when met assumes that adjustment to the dependent variable by the covariate is 
in the same direction for each independent variable group. Ideally, the investigator 
would want the slopes to be the same for all groups. If, however, this assumption is 
violated, then ANCOVA cannot be used, and an alternative approach would need to 
be implemented.
 It is important to note that for ANCOVA, a Type I Sum of Squares decomposi-
tion needs to be requested. Typically, in ANOVA- based designs, a Type III Sum 
of Squares decomposition is evaluated to provide an unweighted means analysis 
of your design (accounting possible unequal cell sizes which might lead to a con-
dition effect in factorial designs), which simultaneously adjusts effects in your 
model for all other effects. But in ANCOVA, we wish to remove the effects of the 
covariate first, followed by the effect(s) of interest. This provides an appropriate 
test of the covariate unadjusted for the independent variable(s) in your model, 
and then provides the independent variable effect(s) adjusted for the covariate. 
Therefore, in SPSS you need to purposely select a Type I Sum of Squares in the 
“Model” window.

Example of one- way ANCOVA (example 1)

Provided in this first example is a straightforward illustration of performing 
ANCOVA. In this generic example, there are two groups (control and experimental), 
a covariate, and the dependent variable. More complex designs of ANCOVA can be 
built on this basic example. When performing an ANCOVA, and in addition to the 
assumptions noted in the ANOVA chapter, you must first determine if the HOR 
(homogeneity of regression) assumption is met.
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Using SPSS pulldown menu for HOR analysis (example 1)

1. Click Analyze, then click General Linear Model, then click Univariate.
2. Click Group and move to Fixed Factor(s).
3. Next, click dependent_variable and move to Dependent Variable.
4. Then click Covariate and move to Covariate(s).
5. Click Model, then click Custom (in newer versions of SPSS this is labeled “Build 

terms”).

a. Click Group and move to Model Column.
b. Then click Covariate and move to Model Column.
c. Next, click both Group and Covariate (by holding the Shift key) and move 

to Model column.
d. Change Sum of squares from Type III to Type I and then click Continue.

6. Click OK.

Syntax for HOR analysis (example 1)

UNIANOVA dependent_variable BY Group WITH covariate
/METHOD=SSTYPE(1)
/INTERCEPT=INCLUDE
/CRITERIA=ALPHA(0.05)
/DESIGN=covariate Group covariate*Group.

Interpreting the output for HOR analysis (example 1)

As shown in Table 6.1, for the HOR analysis SPSS generates the Tests of Between- 
Subjects Effects table. The group × covariate interaction, which is what we wish to 
focus upon, is not statistically significant (p = 0.833). Thus, we can conclude that 
the HOR assumption was met and therefore use the covariate in the ANCOVA 
analysis.

Table 6.1  Tests of between-subject effects, reprint courtesy of International Business Machines 
Corporation

Tests of Between-Subjects Effects
Dependent Variable: dependent_variable

Source Type I sum of squares df. Mean square F Sig.

Corrected Model 93883.623a 3 31294.541 10.246 .024
Intercept 799949.956 1 799949.956 261.917 .000
Covariate 22787.817 1 22787.817 7.461 .052
Group 70941.492 1 70941.492 23.227 .009
Group*covariate 154.314 1 154.314 .051 .833
Error 12216.859 1 3054.215
Total 906050.438 8
Corrected Total 106100.482 7

Source: © International Business Machines Corporation.

Note
a R Squared = .885 (Adjusted R Squared = .798).
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Using SPSS pulldown menu for ANCOVA analysis after meeting 
HOR assumption (example 1)

1. Click Analyze, then click General Linear Model, then click Univariate.
2. Click Reset to discard the previous HOR analysis.
3. Click Group and move to Fixed Factor(s), then click dependent_variable and 

move to Dependent Variable, then click Covariate and move to Covariate(s).

a. Click Model.
b. Change Sum of squares from Type III to Type I and then click Continue.

4. Click Options, then click GROUP and move to “Display means for” box.

a. then check the Descriptive statistics box, then click Continue.

5. Click OK.

Syntax for ANCOVA after meeting HOR assumption (example 1)

UNIANOVA dependent_variable BY Group WITH covariate
/METHOD=SSTYPE(1)
/INTERCEPT=INCLUDE
/PLOT=PROFILE(Group)
/EMMEANS=TABLES(Group) WITH(covariate=MEAN)
/PRINT=DESCRIPTIVE
/CRITERIA=ALPHA(.05)
/DESIGN=covariate Group.

Interpreting the output for SPSS after meeting HOR assumption (example 1)

As shown in Table 6.2, the Tests of Between- Subjects Effects generated by SPSS there 
is a significant effect for the group factor (p = 0.003). In Table 6.3, SPSS produces the 
mean and standard error values for the control and experimental groups. It is 
important to note, that these mean values have been adjusted for the covariate as 
indicated at the bottom of Table 6.3.

Table 6.2  Tests of between-subjects effects, reprint courtesy of International Business 
Machines Corporation

Tests of Between-Subjects Effects
Dependent Variable: dependent_variable

Source Type I sum of squares df. Mean square F Sig.

Corrected Model 93729.309a 2 46864.654 18.941 .005
Intercept 799949.956 1 799949.956 323.312 .000
Covariate 22787.817 1 22787.817 9.210 .029
Group 70941.492 1 70941.492 28.672 .003
Error 12371.173 5 2474.235
Total 906050.438 8
Corrected Total 106100.482 7

Source: © International Business Machines Corporation.

Note
a R Squared = .883 (Adjusted R Squared = .837).
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Sample write- up (example 1)

A one- way ANCOVA was performed in the current investigation. Prior to the main 
analysis, the homogeneity of regression (HOR) assumption was assessed and found 
to be tenable; the interaction of the independent variable and the covariate was not 
significant, F(1,4) = 0.051, p = 0.833, indicating parallel slope adjustment on the 
dependent variable for levels of our independent variable. The ANCOVA analysis 
revealed a significant overall F-ratio [F(1,5) = 28.67, p = 0.003]. Thus, there was a 
significant mean difference between the two groups [410 ± 25 vs. 222 ± 25; p = 0.003].

Example of two- way ANCOVA (example 2)

In this second example, we extend the one- way ANCOVA example from above with 
some slight modifications. Specifically, for the group variable we now have three 
levels (control, placebo, or experimental) and we have added a second factor (fitness 
level) which has three levels (sedentary, active, or highly active). When performing a 
two- way ANCOVA, you must first determine if the HOR (homogeneity of regres-
sion) assumption is met.

Using SPSS pulldown menu for HOR analysis (example 2)

1. Click Analyze, then click General Linear Model, then click Univariate.
2. Hold the Shift key and then click Group and Fitness_Level and then move to 

Fixed Factor(s).
3. Next, click dependent_variable and move to Dependent Variable.
4. Then click Covariate and move to Covariate(s).
5. Click Model, then click Custom (in newer versions of SPSS it may be labelled 

“Build terms”).

a. Holding the Shift key, click Group and Fitness_Level and then move to 
Model Column.

b. Holding the Shift key, click Group and Covariate and then move to Model 
Column.

c. Holding the Shift key, click Fitness_Level and Covariate and then move to 
Model Column.

Table 6.3 Group, reprint courtesy of International Business Machines Corporation
Group
Dependent Variable: dependent_variable

Group Mean Std. error 95% confidence interval

Lower bound Upper bound

Control 410.41a 24.87 346.47 474.36
Exp. 222.02a 24.87 158.08 285.96

Source: © International Business Machines Corporation.

Note
a Covariates appearing in the model are evaluated at the following values: covariate = 65.62500.
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d. Holding the Shift key, click Group, Fitness_Level, and Covariate and then 
move to Model Column.

e. Change Sum of squares from Type III to Type I and then click Continue.

6. Click OK.

Syntax for HOR analysis (example 2, two- way ANCOVA)1

UNIANOVA dependent_variable BY Group Fitness_Level WITH covariate
/METHOD=SSTYPE(1)
/INTERCEPT=INCLUDE
/CRITERIA=ALPHA(0.05)
/DESIGN=covariate, Group, Fitness_Level, Group*Fitness_Level,
covariate*Group, covariate*Fitness_Level, covariate*Group*Fitness_Level.

Interpreting the output for HOR analysis (example 2, two- way 
ANCOVA)

As shown in Table 6.4, for the HOR analysis SPSS generates the Tests of Between- 
Subjects Effects table. The points of emphasis are the various interaction terms 
within the table. In all four cases, the interaction terms are not significant (p- values 
ranging from 0.221 to 0.903). Thus, the HOR assumption was met.

Using SPSS pulldown menu for ANCOVA analysis after meeting 
HOR assumption (example 2)

1. Click Analyze, then click General Linear Model, then click Univariate.
2. Click Reset to discard the previous HOR analysis.

Table 6.4  Tests of between-subjects effects, reprint courtesy of International Business Machines 
Corporation

Tests of Between-Subjects Effects
Dependent Variable: dependent_variable

Source Type I sum 
of squares

df. Mean square F Sig.

Corrected Model 34858.185 11 3168.926 .957 .487
Intercept 17307197.78 1 17307197.78 5227.215 .000
Covariate 10333.957 1 10333.957 3.121 .079
Group 1918.111 2 959.056 .290 .749
Fitness_Level 2676.935 2 1338.468 .404 .668
Group*Fitness_Level 7410.799 1 7410.799 2.238 .136
Group*covariate 3171.432 2 1585.716 .479 .620
Fitness_Level*covariate 9298.042 2 4649.021 1.404 .248
Group*Fitness_Level*covariate 48.907 1 48.907 .015 .903
Error 622464.035 188 3310.979
Total 17964520.00 200
Corrected Total 657322.220 199

Source: © International Business Machines Corporation.
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3. Hold down the Shift key and click on Group and Fitness_Level then move to 
Fixed Factor(s).

4. Then click dependent_variable and move to Dependent Variable, then click 
Covariate and move to Covariate(s).

a. Click Model.
b. Change Sum of squares from Type III to Type I and then click Continue.

5. Click Options.

a. Then click GROUP and move to “Display means for” box.
b. Then click Fitness_Level and move to “Display means for” box.
c. Then click GROUP* Fitness_Level and move to “Display means for” box.
d. Click the box next to Compare main effects.
i. From the pulldown menu select Bonferroni.
e. Check the Descriptive statistics box.
f. Then click Continue.

6. Click OK.

Syntax for ANCOVA after meeting HOR assumption (example 2, 
Two- way ANOVA)

UNIANOVA dependent_variable BY Group Fitness_Level WITH covariate
/METHOD=SSTYPE(1)
/INTERCEPT=INCLUDE
/EMMEANS=TABLES(Group) WITH(covariate=MEAN) COMPARE ADJ 
(BONFERRONI)
/EMMEANS=TABLES(Fitness_Level) WITH(covariate=MEAN) COMPARE ADJ 
(BONFERRONI)
/EMMEANS=TABLES(Group*Fitness_Level) WITH(covariate=MEAN)
/PRINT DESCRIPTIVE
/CRITERIA=ALPHA(.05)
/DESIGN=covariate Group Fitness_Level Group*Fitness_Level.

Interpreting the output for SPSS after meeting the HOR assumption 
(example 2, two- way ANCOVA)

As shown in Table 6.5, the Between- Subjects Factors generated by SPSS shows the 
two factors (group and fitness level) as well as their corresponding levels and label 
for each of those levels.
 In Table 6.6, SPSS produces the Tests of Between- Subjects Effects table which 
will indicate whether or not there are significant main effects for group and fitness 
level as well as a significant interaction term when using the covariate variable. In 
this example, the p- value for the interaction term (group × fitness level) is not sta-
tistically significant (p = 0.135). Moreover, the p- values for the group and fitness 
level main effects are p = 0.747 and p = 0.666, respectively. Thus, there are also no 
significant main effects. Due to the lack of significant findings, no post- hoc testing 
is required.
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Sample write- up (example 2, two- way ANCOVA)

The two- way ANCOVA was performed in the present study. Prior to the formal 
analysis, an evaluation of the homogeneity of regression (HOR) assumption was per-
formed. None of the covariate interactions were significant and, therefore it was 
concluded that the HOR assumption was met. The formal 3 [group: control, 
placebo, or experimental] × 3 [fitness level: sedentary, active, or highly active] 
ANCOVA revealed no significant interaction [F(1,193) = 2.252; p = 0.135]. More-
over, there were no significant main effects for group [F(2,193) = 0.292; p = 0.747] or 
fitness level [F(2,193) = 0.407; p = 0.666]. Due to the lack of any significant findings, 
we failed to reject the null hypothesis.

Table 6.5  Between-subject factors, reprint courtesy of International Business Machines 
Corporation

Between-Subjects Factors

Value label N

Group 0 Control 76
1 Placebo 44
2 Experimental 80

Fitness_Level 1 Sedentary 86
2 Active 67
3 Highly Active 37

Source: © International Business Machines Corporation.

Table 6.6   Tests of between-subjects effects, reprint courtesy of International Business Machines 
Corporation

Tests of Between-Subjects Effects
Dependent Variable: dependent_variable

Source Type I sum of squares df. Mean square F Sig.

Corrected Model 22339.804a 6 3723.301 1.132 .345
Intercept 17307197.78 1 17307197.78 5227.215 .000
covariate 10333.957 1 10333.957 3.141 .078
Group 1918.111 2 959.056 .292 .747
Fitness_Level 2676.935 2 1338.468 .407 .666
Group*Fitness_Level 7410.799 1 7410.799 2.252 .135
Error 634982.416 193 3290.064
Total 17964520.00 200
Corrected Total 657322.220 199

Source: © International Business Machines Corporation.

Note
a R Squared = .034 (Adjusted R Squared = .004).
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Note
1.  An alternative method to assess HOR in factorial ANCOVA is to use the MANOVA 

syntax in SPSS, which will give a single grouped interaction term for all independent vari-
ables and the covariate. The syntax below illustrates this approach:

MANOVA dependent_variable BY Group (0,2) Fitness_Level (1,3) WITH covariate
/print = signif(brief )
/analysis = dv
/method=sequential
/design covariate Group Fitness_Level Group*Fitness_Level
covariate*Group+covariate*Fitness_Level+covariate*Group*Fitness_Level.
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7 Diagnostic tests for regression

Introduction

After completing data collection and prior to beginning the formal regression ana-
lyses, it is incumbent on the investigator to screen their data. Typically, this process 
is called data cleaning in which the investigator examines each variable in the data 
set to assure that errors have not been made. Errors can range from simple typo-
graphic mistakes such as transcribing the subject’s weight in pounds when in fact 
kilograms were the units needed, to errors which may not be initially or readily 
obvious and can potentially skew the results of your formal statistical analyses. 
Therefore, the present chapter will focus on this latter error by introducing estab-
lished data screening procedures used to identify outliers within a given data set.

Review of regression assumptions

As discussed in the ANOVA section, quantitative models have assumptions which 
first need to be met in order to generate valid conclusions about the population of 
interest. Similarly, regression analysis has its own set of assumptions: (i) normality; 
(ii) linearity; (iii) homoscedasticity; (iv) multicollinearity; and (v) independence.
 Normality. Normality refers the data for each variable having a normal distribu-
tion and not being skewed in one direction or another.
 Linearity. Linearity, as named, refers to the linear relationship amongst the 
independent and dependent variables. Therefore, if data are curvilinear then any 
predictions from a linear model may be biased. Linearity may be detected through 
bivariate scatterplots and evaluating whether the plotted points create a straight- 
line association. The observed versus the predicted values may also be plotted, 
which will result in a scatterplot with the data points distributed around the 
regression line.
 Homoscedasticity. Homoscedasticity indicates that the variation for the residuals 
is constant without noticeable patterns. That is, the variances of the dependent vari-
able at the various levels of the independent variable are approximately equal. To 
determine if the homoscedasticity assumption has been violated (i.e., heteroscedas-
ticity), plot the residuals versus the predicted values. The plotted values should be 
equally distributed along the zero point forming a rough rectangle. Violation of 
homoscedasticity would be indicated by the plotted values flaring in or out (> or <) 
like a sieve. Note that this assessment (plotting the residuals vs. predicted values) can 
also be used to assess multivariate normality and linearity.



60  Regression analysis

 Multicollinearity. Multicollinearity refers to extremely high correlations (usually 
0.90 or above) between predictors, or between predictors and the criterion. Correla-
tions of 0.90 or higher between variables can be problematic causing strange analyt-
ical results – for example, extreme standard errors thus producing Type II errors in 
significance of predictors. Variables correlated at 0.90 or higher may be deemed “the 
same” variable essentially, since the overlapping variance is at least 81 percent. That 
being said, research in the medical sciences and related fields may indeed find vari-
ables so highly correlated are important to include in the regression since medical 
and health outcomes are highly determined or influenced by biological markers. If 
the researcher deems multicollinearity to be problematic, consider dropping one of 
the variables. Assessment of multicollinearity is done by evaluating the bivariate 
correlation matrix between variables and criterion. Also, tolerance may be assessed, 
which is 1 minus the squared multiple correlation (SMC) of a predictor by the other 
predictors in the regression (1 – SMC). Extremely low tolerance values such as 0.10 
can indicate high multicollinearity, although values <0.20 may also be of concern. 
The variance inflation factor (VIF ) may also be assessed, calculated as 1/tolerance. 
Values greater than 10 suggest high multicollinearity, and if the average of the 
VIF values across variables exceeds 1.0, that is also indicative of problematic 
multicollinearity.
 Independence. Independence refers to the independence of errors in the prediction 
of the criterion. Nonindependence of errors of prediction suggests there is some 
dependency between the order of cases in the data and the regression variables. One 
example of such a dependency bias would be “time,” where due to interviewer 
effects those sampled earlier during the study period show more varied responses 
compared to those later sampled. Violation of this assumption can be assessed by 
plotting the residuals by the order cases were assessed. A formal test of this assump-
tion is the Durbin- Watson test, which looks at the autocorrelation of errors by the 
case sequence. The Durbin- Watson test ranges between 0 and 4, with values close to 
2 indicating uncorrelated errors (values close to 0 or 4 indicate extreme positive or 
negative autocorrelation, respectively). Values between 1.5 and 2.5 are indicative of 
independence.

Identifying outliers

It is essential prior to performing your formal statistical analyses to screen your data. 
This is important because it will assist in identifying case(s) that are outliers. An 
outlier may be a data point with an extremely higher or lower value related to other 
data points for that variable. Outliers may be simple typographical errors (such as 
entering the number 500 when you meant to enter 50) or more complex. Neverthe-
less, it is important to remember that outliers may potentially distort the results of 
your formal test statistic. A number of different data screening techniques are used 
to identify outliers.
 Bivariate plots. Bivariate scatterplots of the predictors and the criterion can reveal 
cases that across pairs of variables have extreme high or low values. Cases that fall 
outside the “swarm” of values in these plots may be outliers and should be evalu-
ated further for adjustment or exclusion. It may be assessed through bivariate plots 
of the predictors, and is revealed by looking for cases that are removed from the 
swarm of plotted values. As a general example, say two variables (age and income) 
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are used to predict a measure of community status. Focusing on age and income, 
someone who is 18 years of age might be typical in a community sample, as would 
someone making $100,000 per year. A bivariate plot of these data might reveal an 
18 year old who earns $100,000 per year – such a case may be considered high in 
leverage if it appears removed or separate from the other plotted values.
 Standardized residuals (ZRESID). The ZRESID are expressed on the z- score scale 
and are calculated by dividing the residual (Yi – Y’) by the standard deviation of the 
sample deviations. A large standardized residual indicates a case is ill- fit by the 
regression line and may be an outlier.
 Adjusted predicted value (ADJPRED). The ADJPRED is the adjusted predicted 
value, where the predicted value from the regression equation is calculated removing 
the ith case (Y = a + bi

(i)xi), where (i) indicates the removal of the ith case. If the 
ADJPRED is noticeably different from the original predicted value, the ith case may 
be an outlier.
 Deleted residuals (DRESID) and studentized deleted residuals (SDRESID). The 
DRESID is the deleted residual, which is a recalculation of the residuals with the ith 
case removed (Yi – Y(i)

i). If the DRESID is noticeably different from the calculated 
residual, then the case may be overly influential. The SDRESID is the studentized 
deleted residual, which is calculated by taking the deleted residual and dividing it by 
its standard error. As with the DRESID, if the SDRESID is noticeably different from 
the SRESID (the studentized residual), then the case may be overly influential.

Influential data point

Leverage. Leverage reflects a case that may be considered distant from other cases 
across the predictors or independent variables. Leverage is not inclusive of the 
dependent variable, but instead focuses on the independent variables or predictors. 
Formal calculations to assess leverage are offered in various statistical programs, 
with leverage values ranging from 0 to 1. The resulting values may be compared to a 
cutoff value – if a leverage value exceeds the cutoff, the case may have undue influ-
ence on the resulting regression line. The cutoff value is calculated as follows (with k 
indicating the number of predictors in the regression model):

2  Formula 10.1 Leverage cutoff value

Cook’s distance (Cook’s D). Influence and its resulting assessment using Cook’s dis-
tance (Cook’s D) also reflects a case’s influence on the regression line. It is a measure 
of change in the residuals when the ith case is removed. Although one can simply 
note the difference between the residual and the deleted residual for a given case to 
provide an assessment of a case’s influence, Cook’s D provides a broader look since 
it encompasses change in all of the residuals. Larger values of Cook’s D indicate 
greater case influence. A rough cutoff to indicate the case may be problematic can be 
calculated using 4/(N – 2), with N being the total number of cases. If Cook’s D for a 
case exceeds the cutoff, it may have an undue influence on the regression line.

 Formula 10.2 Cook’s distance
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Research question

The investigator is interested in performing diagnostics on the regression model they 
are planning to develop. Below we present the interpretations of the various methods 
of screening the data set. Thereafter, we present the pulldown menu instructions and 
syntax commands for achieving each analyses.

Interpretation of data screening

Normality, linearity, and homoscedasticity

In starting to make our assessment, we begin by assessing normality. This is done by 
evaluating histograms of the variables in the planned regression, and is considered a 
univariate or single variable assessment (a multivariate normality assessment will be 
covered shortly). Figures 7.1 and 7.2 illustrate the syntax and resulting histogram 
for two of the variables (oxygen uptake and age). Keep in mind that the criterion 
variable is oxygen uptake and will be referred to as such in the examples below. For 
both histograms, a slight skew is noted, but in general it may be concluded that these 
variables are approximately normal.
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Figure 7.1  Histogram for the age variable, reprint courtesy of International Business Machines 
Corporation.

Source: © International Business Machines Corporation.
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 Next, we assess linearity using bivariate scatterplots which is performed for all 
variables in the planned regression. In Figure 7.3, we present syntax for the bivariate 
plots of the criterion with age, and with weight. In these graphs, we wish to see 
straight- line associations (an absence of curvilinearity). Although not perfectly 
aligned, the graphs suggest linearity is tenable. Since these are bivariate assessments, 
a multivariate assessment should also be performed (to be demonstrated in the next 
section).
 Homoscedasticity is assessed by plotting the standardized predicted values by 
standardized residuals. This same multivariate plot is also used to assess multivariate 
normality and linearity. To assess homoscedasticity (and multivariate normality and 
linearity), run the planned regression analysis and request a plot of the standardized 
predicted values by the standardized residuals. This is demonstrated in Figure 7.4. 
To meet all three multivariate assumptions, the plotted values should be equally dis-
tributed along the zero point forming a rough rectangle. Violation of homoscedastic-
ity would be indicated by the plotted values flaring in or out (> or <) like a sieve. 
Violation of normality would be indicated by the plotted cases clustered either below 
or above the zero mark (as opposed to being equally distributed). Violation of line-
arity would be indicated by the plotted cases forming a 

∩

 or ∩ association thereby 
suggesting a curved association. In Figure 7.4, the cases meet the assumptions of 
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Figure 7.2  Histogram for V·o2 max variable, reprint courtesy of International Business 
Machines Corporation.

Source: © International Business Machines Corporation.
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multivariate normality and linearity. However, there may be an issue with homo-
scedasticity since the plotted cases flare outward (<), which may produce a degraded 
solution and thus increase the likelihood of Type II error.
 The graph above (Figure 7.4) illustrates a fairly good spread of the standardized 
residuals plotted against standardized predicted values. If we draw a horizontal line 
at the zero point along the ordinal axis (regression standardized residual), the plot 
points equally fall above/below the line, suggesting multivariate normality. Using 
this same horizontal line, we may also assess homoscedasticity. Here, the plot points 
generally fall above/below the line, although there is a slight flaring pattern suggest-
ing heteroscedasticity, which may produce a degraded solution. Thus, borderline 
regression results should be interpreted carefully. If we next draw a line of best fit 
across the plot points, there appears to be a straight- line association (no clear curvi-
linear association), suggesting multivariate linearity.
 Multicollinearity is assessed using bivariate correlations, tolerance, and the vari-
ance inflation factor (VIF ). Bivariate correlations are presented in Table 7.1, with 
tolerance and the VIF presented in Table 7.2. None of the bivariate correlations 
across variables exceed 0.90. The tolerance values are well above 0.10, and the VIF 
values well below 10 (with the average VIF exceeding 1.0 as well). Extreme multi-
collinearity does not appear to be an issue within our data.
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Figure 7.4  Homoscedasticity plot scatterplot, reprint courtesy of International Business 
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 Multicollinearity is assessed in the table above (Table 7.2) focusing on the toler-
ance and VIF (variance inflation factor). The two statistics are related (1/VIF = toler-
ance). Low tolerance values (<0.20) suggest possible multicollinearity. For VIF, a 
single value greater than 10 is problematic, while an “average” VIF across all vari-
ables exceeding 1.0 may suggest multicollinearity issues. Evaluating Model 1 above, 
no variables have tolerance values less than 0.20. For VIF, all values are well below 
10, and the average VIF exceeds 1.0. Therefore, there does not appear to be multi-
collinearity in our model that may bias the regressions results.

Independence of errors of prediction

This is assessed requesting the Durbin- Watson statistic, which tests the assumption 
of independence of errors of prediction. Table 7.3 contains the necessary syntax to 
produce the Durbin- Watson statistic. As noted earlier, values between 1.5 and 2.5 
are indicative of independence. In our example the Durbin- Watson statistic is 2.082, 
well within the acceptable range.
 As noted earlier, the Durbin- Watson test assesses autocorrelation of errors by the 
case sequence to evaluate independence of errors. That is, are adjacent case residuals 
correlated, or independent? As shown in Table 7.3, our value of 2.082 is close to 2.0 
(indicative of independence).

Table 7.2  Excluded variables, reprint courtesy of International Business Machines Corporation
Excluded Variablesa

Model Beta 
in

t Sig. Partial 
correlation

Colinearity statistics

Tolerance VIF Minimum 
tolerance

1 Times/wk_exercise .112b 1.226 .224 .145 .971 1.030 .549
Intensity of subjects 
training (6–20)

.377b 4.477 .000 .472 .905 1.105 .533

Source: © International Business Machines Corporation.

Notes
a Dependent Variable: Vo2mx_ml.
b Predictors in the Model: (Constant), age_yrs, wt_kg, ht_meter.

Table 7.3 Model summary, reprint courtesy of International Business Machines Corporation
Model Summaryc

Model R R square Adjusted R square Std. error of the estimate Durbin-Watson

1 .650a .422 .398 337.741
2 .743b .553 .520 301.511 2.082

Source: © International Business Machines Corporation.

Notes
a Predictors: (Constant), age_yrs, wt_kg, ht_meter.
b Predictors: (Constant), age_yrs, wt_kg, ht_meter, Times/wk_exercise, intensity of subjects training (6–20).
c Dependent Variable: Vo2mx_ml.
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Outlier assessment

Outliers are assessed through a number of different ways. Bivariate plots (for 
example, those in Figure 7.2) can be assessed for data points beyond the swarm of 
plotted points. In Figure 7.3, most cases are reasonable, although a few straggling 
cases are noted in each plot. The question to ask, however, is whether these strag-
gling cases are indeed outliers and whether they are having an undue influence on 
the overall regression? Further assessment using additional techniques will help 
answer this question.
 The standardized residuals are also evaluated to assess outliers, along with the 
adjusted predicted values and deleted residuals. Table 7.4 is the syntax and output 
to assess the standardized residuals. The most extreme ten cases are printed, and a 
histogram of the residuals is also presented. Overall, two cases have standardized 
residuals exceeding ± 2.56 indicating problematic fit. Whether these cases have an 
undue influence on the regression line will be assessed in a later section, but here we 
should be at least moderately concerned that these cases may be problematic. The 
histogram for the standardized residuals looks appropriate.
 In the table above (Table 7.4), the studentized deleted residual is provided as a 
means of determining overly influential cases in our data set. Those cases exceeding 
a standardized value of 2.56 (p < 0.01) are cases with undue influence. Here, two 
cases (#28 and #57) exceed the 2.56 cutoff, and should be further evaluated. Note 
the case number is not the subject number in the data set, but literally the “row” 
number associated with the case.
 The adjusted predicted value may also be evaluated for outliers by plotting it by 
the predicted value. Figure 7.5 presents the syntax and resulting plot. Cases that fall 
off the diagonal are indicative of possible outlying cases. In Figure 7.5, it appears 
most cases are in alignment.
 The deleted residuals and studentized deleted residuals may also be evaluated for 
outliers. This is done by plotting the deleted residual by the calculated residual, and 

Table 7.4  Outlier statistics, reprint courtesy of International Business Machines 
Corporation

Outlier Statisticsa

Case number Statistics

Stud. Deleted Residual 1 28 3.346
2 57 2.644
3 73 –2.478
4 55 2.172
5 18 –2.089
6 48 1.929
7 12 1.616
8 16 1.607
9 35 1.590

10 7 1.566

Source: © International Business Machines Corporation.

Note
a Dependent Variable: Vo2mx_ml.
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plotting the studentized deleted residual by the studentized residual. Cases that fall 
away from the diagonal are indicative of possible outlying cases. For both graphs 
(Figure 7.6), there is no evidence of outlying cases.

Influential data points

Influential data points may be examined using a centered leverage measure and 
Cook’s distance (Cook’s D). As shown in Table 7.5, we request a case- wise plot of 
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Table 7.5 Casewise diagnostics, reprint courtesy of International Business Machines Corporation

Case number Std. residual Vo2mx_ml Residual Centered 
leverage value

Cook’s 
distance

28 2.947 4073 888.672 .096 .200
55 2.080 2934 627.136 .020 .026
57 2.468 3578 744.055 .040 .061
73 –2.287 2074 –689.569 .072 .088

Source: © International Business Machines Corporation.

Note
a Dependent Variable: Vo2mx_ml.
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cases with residuals greater than 2 using the “OUTLIERS(2)” command, which 
selects only those cases with standardized residuals ± 2. The residual (RESID) and 
standardized residual (ZRESID) is also presented for comparison purposes.
 Using Formula 10.1 from earlier in the chapter, we calculate a leverage cutoff of 
0.16. Below, k is the number of predictors in the regression, and N is the number of 
total cases. The values for leverage in Table 7.5 are all below the calculated cutoff 
of 0.16.

Leverage cutoff calculation

2  (1)

2  (2)

2  = 0.16 (2)

For Cook’s distance, we calculate a cutoff using 4/(N – 2), with N being the total 
number of cases. For our example, we calculate a cutoff of 0.0548: 4/73 = 0.0548. 
Next, we evaluate the extreme cases in the case- wise table from Table 7.5 – three of 
our cases violate the cutoff, and therefore may have an undue influence on the 
overall regression results.

Sample write- up

Typically, there is no write- up for the diagnostics analyses. These are performed 
prior to the formal regression analyses. Nevertheless, it is important to conduct these 
diagnostics as discussed above.

Using SPSS pulldown menu to generate histogram graph

1. Click Graphs, then move cursor over Legacy Dialogs, then over cursor over His-
togram then left click.

2. Click age_yrs, then move to Variable box.
3. Then click OK.
4. Follow steps 1–3 to generate histogram for the oxygen uptake (Vo2mx_ml) 

variable.

Syntax to generate histogram graph

GRAPH
/HISTOGRAM = age_yrs.
GRAPH
/HISTOGRAM = Vo2mx_ml.
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Using SPSS pulldown menu to generate bivariate scatter plot

1. Click Graphs, then move cursor over Legacy Dialogs, then over cursor over 
Scatter/Dot then left click.

2. Click Simple Scatter and then click Define.
3. Click age_yrs and move to X- axis box.
4. Click Vo2mx_ml and move to Y- axis box.
5. Click OK.
6. Follow steps 1–5 to generate bivariate scatterplot for weight and oxygen uptake.

Syntax to generate bivariate scatterplots

GRAPH
/SCATTERPLOT(BIVAR)=age_yrs WITH Vo2mx_ml
/MISSING=LISTWISE.
GRAPH
/SCATTERPLOT(BIVAR)=wt_kg WITH Vo2mx_ml
/MISSING=LISTWISE.

Using SPSS pulldown menu for multivariate normality, linearity, and 
homoscedasticity

 1. Click Analyze, then move cursor over Regression and then move cursor over 
Linear and click.

 2. Click Vo2max_ml, then move to Dependent box.
 3. Click wt_kg, then move to Independent(s) box.
 4. Click ht_meter, then move to Independent(s) box.
 5. Click age_yrs, then move to Independent(s) box.
 6. Click Next.
 7. Click timeperw, then move to Independent(s) box.
 8. Click intensity, then move to Independent(s) box.
 9. You should now be on Block 2 of 2.
10. Click Plots, then click *ZPRED, and move to “X:” box.
11. Click Plots, then click *ZRESID, and move to “Y:” box.
12. Click Continue.
13. Click OK.

Syntax to generate multivariate normality, linearity, and 
homoscedasticity

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10) CIN(95)
/NOORIGIN
/DEPENDENT Vo2mx_ml
/METHOD=ENTER wt_kg ht_meter age_yrs
/METHOD=ENTER timeperw intensty
/SCATTERPLOT=(*zresid,*zpred).
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Using SPSS pulldown menu for bivariate correlations

1. Click Analyze, then move cursor over Correlate and then move cursor over 
Bivariate and click.

2. Click Vo2mx_ml, then move to Variables box.
3. Repeat step #2 for wt_kg, ht_meter, age_yrs, timeperw, and intensity.
4. Note that Pearson is checked and two- tailed is also checked.
5. Flag significant correlations box should be checked.
6. Click OK.

Syntax to generate bivariate correlations

CORRELATION
/VARIABLES Vo2mx_ml wt_kg ht_meter age_yrs timeperw intensty.

Using SPSS pulldown menu for tolerance and VIF

 1. Click Analyze, then move cursor over Regression and then move cursor over 
Linear and click.

 2. Click Vo2max_ml, then move to Dependent box.
 3. Click wt_kg, then move to Independent(s) box.
 4. Click ht_meter, then move to Independent(s) box.
 5. Click age_yrs, then move to Independent(s) box.
 6. Click Next.
 7. Click timeperw, then move to Independent(s) box.
 8. Click intensity, then move to Independent(s) box.
 9. You should now be on Block 2 of 2.
10. Click Statistics, then check the box for the following:

a. Collinearity diagnostics.
b. Confidence intervals level (%): 95.

11. Click Continue.
12. Click OK.

Syntax to generate tolerance and VIF

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS CI(95) R ANOVA COLLIN TOL
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Vo2mx_ml
/METHOD=ENTER wt_kg ht_meter age_yrs
/METHOD=ENTER timeperw intensty.

Using SPSS Pulldown Menu for Independence of Errors (Durbin- Watson Test)

 1. Click Analyze, then move cursor over Regression and then move cursor over 
Linear and click.
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 2. Click Vo2max_ml, then move to Dependent box.
 3. Click wt_kg, then move to Independent(s) box.
 4. Click ht_meter, then move to Independent(s) box.
 5. Click age_yrs, then move to Independent(s) box.
 6. Click Next.
 7. Click timeperw, then move to Independent(s) box.
 8. Click intensity, then move to Independent(s) box.
 9. You should now be on Block 2 of 2.
10. Click Statistics, then check the box for the following:

a. Collinearity diagnostics.
b. Confidence intervals level (%): 95.
c. Durbin- Watson.

11. Click Continue.
12. Click OK.

Syntax to generate independence of errors (Durbin- Watson test)

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS CI(95) R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Vo2mx_ml
/METHOD=ENTER wt_kg ht_meter age_yrs
/METHOD=ENTER timeperw intensty
/RESIDUALS DURBIN.

Using SPSS pulldown menu standardized residuals

 1. Click Analyze, then move cursor over Regression and then move cursor over 
Linear and click.

 2. Click Vo2max_ml, then move to Dependent box.
 3. Click wt_kg, then move to Independent(s) box.
 4. Click ht_meter, then move to Independent(s) box.
 5. Click age_yrs, then move to Independent(s) box.
 6. Click Next.
 7. Click timeperw, then move to Independent(s) box.
 8. Click intensity, then move to Independent(s) box.
 9. You should now be on Block 2 of 2.
10. Click Paste.

a. This will bring up the syntax window with your syntax for the above steps.
b. Then type in the following syntax on the last line:

i. /residuals=histogram(sdresid) outliers(sdresid).

11. Then click the green play () icon on the top of the menu.
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Syntax to generate standardized residuals

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10) CIN(95)
/NOORIGIN
/DEPENDENT Vo2mx_ml
/METHOD=ENTER wt_kg ht_meter age_yrs
/METHOD=ENTER timeperw intensty
/residuals=histogram(sdresid) outliers(sdresid).

Using SPSS pulldown menu for adjusted predicted values

 1. Click Analyze, then move cursor over Regression and then move cursor over 
Linear and click.

 2. Click Vo2max_ml, then move to Dependent box.
 3. Click wt_kg, then move to Independent(s) box.
 4. Click ht_meter, then move to Independent(s) box.
 5. Click age_yrs, then move to Independent(s) box.
 6. Click Next.
 7. Click timeperw, then move to Independent(s) box.
 8. Click intensity, then move to Independent(s) box.
 9. You should now be on Block 2 of 2.
10. Click Paste.

a. This will bring up the syntax window with your syntax for the above steps.
b. Then type in the following syntax on the last line:

i. /SCATTERPLOT=(*adjpred, *pred).

11. Then click the green play () icon on the top of the menu.

Syntax to generate adjusted predicted values

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10) CIN(95)
/NOORIGIN
/DEPENDENT Vo2mx_ml
/METHOD=ENTER wt_kg ht_meter age_yrs
/METHOD=ENTER timeperw intensty
/SCATTERPLOT=(*adjpred, *pred).

Using SPSS pulldown menu for deleted residuals and studentized 
deleted residuals

 1. Click Analyze, then move cursor over Regression and then move cursor over 
Linear and click.
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 2. Click Vo2max_ml, then move to Dependent box.
 3. Click wt_kg, then move to Independent(s) box.
 4. Click ht_meter, then move to Independent(s) box.
 5. Click age_yrs, then move to Independent(s) box.
 6. Click Next.
 7. Click timeperw, then move to Independent(s) box.
 8. Click intensity, then move to Independent(s) box.
 9. You should now be on Block 2 of 2.
10. Click Paste.

a. This will bring up the syntax window with your syntax for the above steps.
b. Then type in the following syntax on the last line:

i. /SCATTERPLOT=(*DRESID, *RESID) (*SDRESID, *SRESID).

11. Then click the green play () icon on the top of the menu.

Syntax to generate deleted residuals and studentized deleted residuals

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10) CIN(95)
/NOORIGIN
/DEPENDENT Vo2mx_ml
/METHOD=ENTER wt_kg ht_meter age_yrs
/METHOD=ENTER timeperw intensty
/SCATTERPLOT=(*DRESID, *RESID) (*SDRESID, *SRESID).

Using SPSS pulldown menu for leverage and Cook’s D

 1. Click Analyze, then move cursor over Regression and then move cursor over 
Linear and click.

 2. Click Vo2max_ml, then move to Dependent box.
 3. Click wt_kg, then move to Independent(s) box.
 4. Click ht_meter, then move to Independent(s) box.
 5. Click age_yrs, then move to Independent(s) box.
 6. Click Next.
 7. Click timeperw, then move to Independent(s) box.
 8. Click intensity, then move to Independent(s) box.
 9. You should now be on Block 2 of 2.
10. Click Paste.

a. This will bring up the syntax window with your syntax for the above steps.
b. Then type in the following syntax on the last line:

i. /casewise=resid zresid cook lever outliers(2).

11. Then click the green play () icon on the top of the menu.
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Syntax to generate for leverage and Cook’s D

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10) CIN(95)
/NOORIGIN
/DEPENDENT Vo2mx_ml
/METHOD=ENTER wt_kg ht_meter age_yrs
/METHOD=ENTER timeperw intensty
/casewise=resid zresid cook lever outliers(2).



8 Basic multiple regression analysis

Introduction
Multiple regression is a statistical technique designed to assess the association 
between multiple variables and the outcome variable. For example, the investigator 
may be interested in examining the relationship between upper body strength and 
distance the javelin is thrown, V·o2 max and 1.5 mile run time, or grade point average 
and hours spent studying. Regression may be conceived as an extension of correl-
ation, with the goal being prediction of an outcome from a set of predictor variables. 
The predictor variables may be viewed as independent variables, and the outcome 
variable is a dependent variable. One advantage of using regression over correlation 
is the technique allows the overlaps or correlations across predictor variables to be 
taken into account when predicting an outcome.
 The investigator can use multiple regression for a number of aims. For example, 
multiple regression is used to assess the overall association of a set of predictors on 
an outcome. Another aim is to derive a model of prediction, which may be used if 
the investigator wishes to predict an outcome from a set of predictor variables. A 
third aim is to assess the importance of predictors. Lastly, multiple regression can be 
used to explore various predictors and their associations with an outcome.

Research questions
What is the overall association between a set of predictors and an outcome? Mul-
tiple regression allows for an examination of the association between a set of predic-
tors and an outcome. Regression produces a multiple R test statistic to indicate the 
overall association between a set of predictors and a criterion, and whether this mul-
tiple correlation is different than what would be expected by chance occurrence.
 An overall model of prediction can be derived using the resulting multiple regres-
sion parameters to derive a model: Y = a + b1x1 + b2x2 + … + bixi. Here, Y is the pre-
dicted score for the outcome variable. The b values are regression parameters, also 
known as weights, derived through multiple regression. The x values are data values 
from the predictor variables. This formula may be used to predict future scores on 
the outcome variable. For example, you may be interested in predicting force pro-
duction (i.e., torque) as a function of age. The resulting model can also be assessed 
as to its significance and whether there is a linear association between the set of pre-
dictor variables and a criterion.
 Which are the most important predictor variables? Multiple regression can be 
used to assess the most important predictor variables from a set. Because of 
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preexisting correlations between predictor variables, correlations alone may be inac-
curate to assess the importance of variables in their association with an outcome 
since independent variables will typically overlap. Taking into account the overlap 
across predictors, multiple regression can be used to evaluate the most important 
predictors in a model. In addition, the technique can assess whether each variable 
contributes uniquely to the overall regression results. Another question addressed 
through multiple regression includes comparing sets of predictor variables – is one 
set of predictor variables superior to another set?
 A host of exploratory data analysis techniques are also available in multiple 
regression. These techniques, referred to as exploratory statistical approaches, allow 
for specific statistical criterion to be utilized in the selection of predictors. Three sta-
tistical approaches to exploratory regression, called Forward, Backward, and Step-
wise, are commonly used. We discourage the use of these exploratory regression 
techniques to develop the prediction model because they often capitalize on chance. 
Instead, however, we recommend that investigators use hierarchical linear regression 
(2) for model building. Hierarchical linear regression is preferable, because the inves-
tigator controls the order of entry of predictor variables based on theoretical con-
siderations as well as less capitalization on chance (1). Alternatively, we also 
recommend the use of the standard multiple regression approach, where all predic-
tor variables are entered simultaneously into the model for evaluation. The one lim-
itation, however, with this approach is that the investigators will not be able to 
determine if a set of predictors improves the overall regression model above and 
beyond another set of predictors.

Review of regression analysis

Multiple regression is based on the statistical method ordinary least squares (OLS), 
which allows for the best linear fit of predictors to an outcome. A simple general 
linear model may be used for illustration. The following example pertains to two 
variables; one predictor (X) and one outcome (Y):

Y = A + BX Formula 8.1

Predicted criterion Y. Y is the predicted outcome. It is the resulting predicted value 
which corresponds to the derived linear fit of a subject’s score X on the predictor 
variable Y.
 Regression weight “B.” B is the regression weight, and is used to multiply each 
subject’s score on the predictor variable. It is also referred to as the slope to indicate 
the direction of the regression line (e.g., a positive slope  or negative slope ).
 The formula for slope B is as follows:

 Formula 8.2

In formula 8.2, the numerator is a measure of covariance, which is an indicator of 
how much variables move together. For both X and Y, mean deviations are calcu-
lated and multiplied together and summed. Larger mean deviations will yield a 
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greater covariance. Note that the numerator for B is exactly the same as the numera-
tor for the Pearson correlation coefficient. Once the covariance is known, it is 
divided by the sum of squares for X. Mean deviations are taken for X, squared, and 
summed. The resulting slope is an indicator of the regression line’s trajectory. If the 
slope is zero, then the expected association between X and Y would be flat, . A 
positive slope indicates a positive association, , while a negative slope represents 
a declining association, .
 Intercept “A.” A is the intercept, and is a constant added to each subject’s score 
on the predictor variable. The formula for the intercept A is as follows:

 Formula 8.3

For formula 8.3, the mean value for Y is subtracted from the product of slope and 
the mean of X.
 Forming the regression line. The slope B and intercept A are used to represent the 
straight- line association or line of best fit between the X and Y variables. If a scatter-
plot of X and Y are produced, the value for A is the point where the regression line 
starts on the Y axis of the scatterplot. The value of B is the gradient or slope of the 
regression line. It also represents how Y changes with unit increases in X.
 Values for A and B in the model are derived to minimize the difference between 
the predicted outcome Y and the actual value. The difference between Y and Y is 
the residual: Y – Y = Residual. Therefore, values of A and B that provide the smallest 
set of residuals are chosen as the final values in the general linear regression model.
 Sum of squares for Y and ANOVA. In addition to the OLS equation, an assess-
ment of the overall linear model is made by calculating the total sum of squares on 
Y (representing variability in Y). This is partitioned into a component reflecting vari-
ance associated with the regression line, and an error variance component reflecting 
deviations of scores from the regression line.

SSy = SSreg + SSres Formula 8.4

 (1)

 (2)

 (3)

The sum of squares values SSreg and SSres can be converted in the typical format to 
mean square estimates by dividing by the appropriate degrees of freedom values (1 and 
N- 2), and an F- ratio may be derived to assess the significance of the linear model.
 Multiple R- square. A multiple R- square value r2

xy, also known as the coefficient of 
determination, may be calculated using the SSy and SSreg components. Multiple 
R- square is a measure of the percent variance accounted for in the criterion Y by the 
predictor X, and also a measure of the relationship strength between the variables. 
By taking the square root of R- square, a multiple R is produced.

 Formula 8.5
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Adjusted R- square. The adjusted R- square value r2
adj adjusts the sample r- square 

value so it is a better estimate of the underlying association in the population.

 Formula 8.6

Here, N is the total number of participants in the sample, and p is the total number 
of predictor variables.
 Standard error of the regression weight, standardized weight, and significance 
test. Earlier, the formula for the regression weight was presented. The standard error 
of this weight may also be calculated to provide the standard deviation of the weight 
in the general population. This is done by first calculating the standard error of the 
estimate of Y:

 Formula 8.7

Where sy is the standard deviation of the criterion Y. Knowing the standard error of 
the estimate, the standard error of B can now be taken

 Formula 8.8

Where the standard error of the estimate sy,x is divided by the square root of the sum 
of the predictor squared.
 The significance of the regression coefficient may be tested using a t- test distribu-
tion with the following formula and a degrees of freedom of N – 2:

 Formula 8.9

The regression weight may also be standardized to allow for direct comparisons 
across multiple predictors. When the regression weight is standardized, the standard-
ized coefficient is called Beta.

 Formula 8.10

Here, ß is a function of the regression weight multiplied by the ratio between the 
standard deviations of X and Y.

Limitations of multiple regression

The resulting associations between the predictors and the outcome are not causal 
unless the research was designed for such purposes. If the predictors are true inde-
pendent variables which were manipulated to effect an outcome, then causality can 
be concluded. In the majority of applications of multiple regression, however, data 
are used to investigate associations and prediction, not causation.
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 Another limitation is that data used for multiple regression should be con-
tinuous, although two-level discrete or dichotomous data may be used as predic-
tors. Note that if the outcome variable or dependent variable is dichotomous, 
multiple regression is the wrong technique. Instead, use logistic regression, which 
allows for dichotomous or categorical outcomes. If predictor variables are discrete 
with more than two levels, you may still use the data in multiple regression, but 
data should be coded in a specific format called dummy coding. The resulting 
multiple regression model is solely limited to the variables used in the analysis. If 
variables were poorly envisioned or measured, then it is doubtful the research will 
be reliable.

Example of multiple regression (example 1)

Do indices of habitual physical activity contribute to the prediction of V·o2 max in 
aerobically trained women above and beyond traditional predictors such as body 
weight, height, and age?

Using SPSS pulldown menu for hierarchical regression (example 1)

1. Click Analyze, then click Regression, then click Linear.
2. Click wt_kg and move to Independent(s) box.
3. Click ht_meter and move to Independent(s) box.
4. Click age_yrs and move to Independent(s) box, then click Next.
5. Click timeperw and move to Independent(s) box.
6. Click intensity and move to Independent(s) box.

a. At this point you should be on block 2 of 2.

7. Click Vo2max_ml and move to Dependent box.
8. Click Statistics.

a. Estimates and Model Fit should already be checked off.
b. You need to click the box for R- squared change.
c. You need to click the box for Descriptives.
d. Click Continue.

9. Click OK.

Syntax for SPSS for hierarchical regression (example 1)

REGRESSION
/DESCRIPTIVES MEAN STDDEV CORR SIG N
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA CHANGE
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Vo2mx_ml
/METHOD=ENTER wt_kg ht_meter age_yrs
/METHOD=ENTER timeperw intensty.
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Interpreting the output for hierarchical regression (example 1)

The IBM SPSS Statistics software (SPSS) output begins with basic descriptive 
information on the variables used for the regression. Basic descriptive statistics are 
produced by the “Descriptives” command in the syntax, and include the mean, 
standard deviation, and available N (nonmissing) for each variable. Note also that in 
the SPSS syntax, a “Missing Listwise” command was used, which is the default 
setting in SPSS. Only those cases with complete data on all variables are utilized in 
the analysis. Since multiple regression analyses are based on the resulting correlation 
matrix among variables, listwise deletion is our recommendation since all of the cor-
relations are based on the same N. An alternative would be “Missing Pairwise” 
which we do not recommend. If the “Pairwise” command is used, the resulting 
correlation matrix would be based on differing pairwise N combinations, which can 
introduce bias into the analyses.
 Following “Descriptives” is information on the entry of variables under the 
heading “Variables Entered/Removed.” For Model 1, age, weight, and height are 
slated for simultaneous entry into the regression equation. Model 2 will add times 
per week subjects exercised, and intensity of training into the model.
 The next portion of output, entitled “Model Summary,” provides information for 
each model step. The statistics provided include multiple R, multiple R- square, the 
adjusted multiple R- square, and a test of R- square change. Results for the Model 1 
predictors (age, weight, and height) show that the multiple R is 0.65. The multiple 

Table 8.1 Descriptive statistics, reprint courtesy of International Business Machines Corporation
Descriptive Statistics

Mean Std. deviation N

Vo2mx_ml 2589.15 435.24 75
wt_kg 60.53 7.97 75
ht_meter 1.66 .07 75
age_yrs 38.24 9.56 75
Times/wk_exercise 6.72 2.37 75
Intensity of subjects training (6–20) 13.65 1.68 75

Source: © International Business Machines Corporation.

Table 8.2  Variables entered/removed, reprint courtesy of International Business Machines 
Corporation

Variables Entered/Removeda

Model Variables entered Variables removed Method

1 age_yrs, wt_kg, ht_meterb Enter
2 Times/wk_exercise, intensity of subjects training 

(6–20)b
Enter

Source: © International Business Machines Corporation.

Notes
a Dependent Variable: Vo2mx_ml.
b All requested variables entered.
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R- square is 0.42, indicating that 42 percent of the total variation in volume of 
oxygen is accounted for by these three variables. The adjusted R- square is 0.40, 
which is an adjustment for R- square for generalization to a broader population. The 
R- square change is the change in R- square from the previous model to the current 
model. Here, the previous model (not shown) is the null model containing no predic-
tors, and thus generating an R- square value of 0. Model 1 has an R- square value of 
0.42. Therefore, the R- square change value is 0.42: 0.42Model1–0Null Model = 0.42. This 
change of 0.42 is then assessed using ANOVA (FChange) to evaluate whether the 
R- square change value of 0.42 is above and beyond what would be expected by 
chance occurrence. For Model 1, the R- square change of 0.42 is significant, F(3, 
71) = 17.30, p < 0.001, suggesting that the resulting R- square change (from the null 
model) is unlikely to have occurred by chance.
 Model 2 is evaluated the same way (Table 8.3). Two additional variables are 
added to the model – times per week exercising, and intensity of training. With five 
total variables in the model, the multiple R is 0.74. The multiple R- square is 0.55, 
indicating 55 percent of the total variation in volume of oxygen is accounted for by 
the five predictors. The adjusted R- square is 0.52, and reflects the change in R- square 
from Model 1 to Model 2. The Model 1 R- square was 0.42, and the Model 2 
R- square was 0.55. Thus, the R- square change value is 0.13: 0.55Model 2–0.42Model 

1 = 0.13. This change of 0.13 from Model 1 to Model 2 indicates that times per week 
exercising and intensity of training, when added to the regression model, account for 
an additional 13 percent of the variance in volume of oxygen. In other words, above 
and beyond the variables in Model 1, the addition of these two variables accounts 
for an additional 13 percent of the variance in our criterion. An ANOVA FChange is 
next provided to evaluate whether the R- square change value of 0.13 is beyond what 
would be expected by chance occurrence. For Model 2, the R- square change of 0.13 
is significant, F(2, 69) = 10.04, p < 0.001, suggesting that the resulting increase in 
R- square by the addition of the two new variables is unlikely to have occurred by 
chance.
 Next in the SPSS output are the assessments of the overall linear model for the 
variables in each model, under the heading “ANOVA.” For Model 1 with the three 
predictors in the model, a significant F statistic is noted, F(3, 71) = 17.30, p < 0.001. 
This ANOVA tells us that there is a significant linear association between the three 
predictors in Model 1 and the criterion. For Model 2, with all five predictors in the 
model, there is a significant F statistic, F(5, 69) = 17.04, p < 0.001. Again, this indi-
cates a significant linear association between the five predictors and the criterion.

Table 8.3 Model summary, reprint courtesy of International Business Machines Corporation
Model Summary

Model R R-square Adjusted R-square Std. error of the estimate

1 .650a .422 .398 337.741
2 .743b .553 .520 301.511

Source: © International Business Machines Corporation.

Notes
a Predictors: (Constant), age_yrs, wt_kg, ht_meter.
b Predictors: (Constant), age_yrs, wt_kg, ht_meter, Times/wk_exercise, intensity of subjects training (6–20).
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 The last portion of output entitled “Coefficients” concerns the components of the 
OLS regression equation. Under the column “Unstandardized Coefficients” is the 
regression weight or slope B, followed by the standard error of the regression weight 
SEß. The next main column heading is “Standardized Coefficients” and contains the 
standardized regression weights (ß’s). The final two columns contain the significance 
test (using a t- test) of the regression weights. The intercept A is located in the row 
marked as “(Constant).”
 Looking at the “Unstandardized Coefficients” column for Model 1, the OLS regres-
sion equation components can easily be identified. The intercept is –1422.79 (listed as 

Table 8.4 ANOVA, reprint courtesy of International Business Machines Corporation
ANOVAa

Model Sum of squares df. Mean square F Sig.

1 Regression 5919109.089  3 1973036.363 17.297 .000b

Residual 8098878.298 71 114068.708
Total 14017987.39 74

2 Regression 7745277.629  5 1549055.526 17.040 .000c

Residual 6272709.758 69 90908.837
Total 14017987.39 74

Source: © International Business Machines Corporation.

Notes
a Dependent Variable: Vo2mx_ml
b Predictors: (Constant), age_yrs, wt_kg, ht_meter.
c Predictors: (Constant), age_yrs, wt_kg, ht_meter, Times/wk_exercise, intensity of subjects training (6–20).

Table 8.5 Coefficients, reprint courtesy of International Business Machines Corporation
Coefficientsa

Model Unstandardized  
coefficients

Standardized 
coefficients

t Sig.

B Std. error Beta

1 (Constant) –1422.789 1183.064 –1.303 .233
wt_kg 9.443 6.260 .173 1.508 .136
ht_meter 2403.429 785.990 .371 3.058 .003
age_yrs –14.082 4.433 –.309 –3.177 .002

2 (Constant) –2236.488 1072.522 –2.085 .041
wt_kg 16.462 5.824 .302 2.827 .006
ht_meter 1785.958 715.362 .276 2.497 .015
age_yrs –12.601 3.980 –.277 –3.166 .002
Times/wk_exercise 7.704 15.281 .042 .504 .616
Intensity of subjects 
training (6–20)

95.407 22.354 .368 4.268 .000

Source: © International Business Machines Corporation.

Note
a Dependent Variable: Vo2mx_ml
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“constant”), and the regression weights are 9.44 for weight, 2403.43 for height, and 
–14.08 for age. Together, the regression equation would be:

 max = –1422.79 + 9.44(weight) + 2403.43(height) + –14.08(age)

The most important predictors in Model 1 may be ascertained by evaluating the 
standardized regression weights (ß’s). The variable with the largest ß-value is height 
(0.37), followed by age (–0.31) and weight (0.17). The significance of the predictors 
is next evaluated, which shows only two of the predictors, height and age, are signi-
ficant at p ≤ 0.05. Although the intercept A is also provided a t- test, this test is evalu-
ated only in specific circumstances. Here, it will be disregarded.
 Model 2 is interpreted in a similar fashion. The intercept for Model 2 is –2236.49, 
and the regression weights are 16.46 for weight, 1785.96 for height, –12.60 for age, 
7.70 for times per week exercising, and 95.41 for intensity of training. Together, the 
regression equation would be:

 max = –2236.49 + 16.46(weight) + 1785.96(height) + –12.60(age) + 7.70 
(exercise per week) + 95.41(training intensity)

Which are the most important predictors in Model 2? The variable with the largest 
ß is intensity of training (0.37), followed by weight (0.30) and age  
(–0.28). The significance of the predictors is next evaluated, which shows four of the 
five predictors being significant at p ≤ 0.05. The one nonsignificant predictor is times 
per week exercising.

Sample write- up for hierarchical regression (example 1)

In the present study, hierarchical linear regression was used to determine predic-
tors of V·o2 max. We first entered anthropometric measures into the first block and 
found a significant increase in the R- value (R = 0.65; p < 0.001). In the second 
block we entered measurement related to exercise intensity. As a result, we found 
that the R- value significantly increased (R = 0.74; p < 0.001). Therefore, the total 
variance accounted for by the model was 52 percent (R2 = 0.52) using the follow-
ing equation: 16.462(wt_kg) + 1785.958(ht_meter) – 12.601(age_yrs) + 7.704(times/
wk_exercise) + 95.407 (intensity of subjects training) – 2236.488.

Example of multiple regression (example 2)

In this second example, rather than performing a hierarchical linear regression the 
investigator is interested in placing all the predictors into a single block and then 
determining which predictors are significantly contributing to the model. To keep 
this example simplistic, there are four predictor variables and then the dependent 
variable.

Using SPSS pulldown menu for a single block regression (example 2)

1. Click Analyze, then click Regression, then click Linear.
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2. Hold down the CTRL key, and then click predictor_1, predictor_2, predictor_3, 
predictor_4, and move to Independent(s) box.

3. Click dependent_variable and move to the Dependent box.
4. At this point, all the predictors are in Block 1 of 1.
5. Click Statistics.

a. Estimates and Model Fit should already be checked off.
b. You need to click the box for R- squared change.
c. You need to click the box for Descriptives.
d. Click Continue.

6. Click OK.

Syntax for SPSS for a single block regression (example 2)

REGRESSION
/DESCRIPTIVES MEAN STDDEV CORR SIG N
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA CHANGE
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Dependent_variable
/METHOD=ENTER Predictor_1 Predictor_2 Predictor_3 Predictor_4.

Interpreting the output for a single block regression (example 2)

As shown in Table 8.6, the model summary indicates that for this single block, the 
R- square change value (0.517) is statistically significant from zero as indicated in the 
column labeled “Sig. F Change.” Thus, the R- value for this model is R = 0.719 and 
the SEE is 0.794.
 Table 8.7 is the ANOVA table and show a significant F statistic [F(4, 
233) = 58.510; p < 0.001]. This ANOVA table tells us that there is a significant linear 
association between the four predictors in Model 1 and the criterion (i.e., dependent 
variable).
 The “Coefficients” is shown in Table 8.8 which provide information regarding 
the regression weight, standard error of the regression weight, standardized 

Table 8.6 Model summary, reprint courtesy of International Business Machines Corporation
Model Summary

Model R R-square Adjusted 
R-square

Std. error 
of the 
estimate

Change statistics

R-square 
change

F change df1 df2 Sig. F 
change

1 .719a .517 .508 .79416 .517 58.510 4 219 .000

Source: © International Business Machines Corporation.

Note
a Predictors: (Constant), Predictor_4, Predictor_2, Predictor_1, Predictor_3.
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regression weights, and the significance test of the regression weights. We can see 
that predictors 3 and 4 significantly contribute to the model, whereas predictors 1 
and 2 do not (p- values 0.101 and 0.275, respectively). In addition, an examination 
of the standardized regression weights (ß) predictor 3 had the largest value 
(ß = 0.567) compared to predictor 3 (ß = 0.289).

Sample write- up for the single block regression (example 2)

In the current study, we investigated whether or not four variables were good pre-
dictors for our outcome variable. Therefore, we entered all four predictors into a 
single block with our outcome variable as the dependent variable. The linear regres-
sion revealed a significant increase in R- value (R = 0.719, SEE = 0.794; p < 0.001). We 
found that predictors 3 and 4 significantly contributed to the model, but not 
predictors 1 and 2. Moreover, the ß-weights show that predictor 3 uniquely con-
tributed to the model (ß = 0.567) than predictor 4 (ß = 0.289). Thus, the total vari-
ance accounted for by the model was 52 percent (R2 = 0.517) using the following 
equation: 0.339(predictor 3) + 0.077(predictor 4) + 2.275.

Table 8.7 ANOVA, reprint courtesy of International Business Machines Corporation
ANOVAa

Model Sum of squares df. Mean square F Sig.

1 Regression 147.609  4 36.902 58.510 .000
Residual 138.122 219   .631
Total 285.731 223

Source: © International Business Machines Corporation.

Note
a Dependent Variable: Dependent_variable.

Table 8.8 Coefficients, reprint courtesy of International Business Machines Corporation
Coefficientsa

Model Unstandardized 
coefficients

Standardized  
coefficients

t Sig.

B Std. error Beta

1 (Constant) 2.275 .382 5.949 .000
Predictor_1 .199 .121 .081 1.647 .101
Predictor_2 –.013 .012 –.052 –1.095 .275
Predictor_3 .339 .030 .567 11.289 .000

2 Predictor_4 .077 .013 .289 5.968 .000

Source: © International Business Machines Corporation.

Note
a Dependent Variable: Dependent_variable.
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9 Multiple regression models for 
quantitative and categorical data

Introduction

As discussed in Chapter 8, multiple regression is a statistical tool used to determine 
the association of multiple variables on an outcome. In this chapter, we will provide 
examples of model building with quantitative and categorical data. Categorical data 
are variables that are mutually exclusive such as ethnicity, religion, or gender. For 
continuous variables participants may vary in terms of amount, whereas for categor-
ical variables participants vary in type. It should be noted, however, that if appro-
priate a continuous variable can also be transformed into a categorical variable. For 
example, the investigator may be interested in examining age groups on a dependent 
variable (i.e., strength performance). In this case, the investigator has recorded the 
age of each subject, but wants to examine the association of age group on the 
dependent variable. Therefore, the investigator can create a categorical variable such 
as 20–29, 30–39, and 40–49 years old and then determine how many of the subjects 
fit into each category.

Curvilinear regression

In addition to examining quantitative and categorical data we will also introduce 
curvilinear regression model development. It should be noted that there are two 
approaches available for curvilinear analyses: powered vectors and orthogonal poly-
nomials (16). For the purposes of this book we will focus on the more common 
powered vectors regression as it has been typically used in the exercise science liter-
ature. Polynomial regression models1 are an extension of linear models (16).
 Below is the transformation of the linear regression model to a powered vector 
regression model:

Y = b0 + m1X (Equation 1, Linear Model)

Y = b0 + m1X + m2X2 (Equation 2, Quadratic Model)

Y = b0 + m1X + m2X2 + m3X3 (Equation 3, Cubic Model)

where m2X2 and m3X3 are the squared and cubed slope terms for equations 2 and 3, 
respectively. Typically, the quadratic regression line has one bend, whereas the cubic 
regression line has two bends. To determine if one model is significantly different 



Multiple regression models  91

from another, the increment in the proportion of the variance accounted for by the 
higher- degree model or trend is determined by using an F- test assessing the R- square 
change. This will be shown in the SPSS output later in this chapter.

Regression with categorical variables

Categorical data require special treatment in multiple regression because data are 
required to be at least interval level for both the criterion and predictors, and most 
categorical or discrete data are nominal (the one exception is dichotomous data). As 
a general rule, if your criterion variable is nominal or dichotomous, multiple regres-
sion is the wrong technique. Instead, logistic regression is the appropriate technique 
to use when outcome measures are dichotomous or multinomial.
 If the predictor variables are dichotomous, they may be used in multiple regression. 
However, if the predictor variables are multinomial, they must be altered for use in 
multiple regression. The coding technique used to alter multinomial variables in regres-
sion is dummy coding. For dummy coding, we create k – 1 number of new variables to 
represent the categories of a multinomial variable, with k indicating the total number 
of categories. The new variables created are called dummy variables. Thus, if there five 
categories, 5–1 dummy variables would be created. The dummy variables consist of 0’s 
and 1’s, with “0” indicating no membership or representation in a category, and “1” 
indicating membership. The k – 1 dummy variables are then used as a “variable set” to 
represent the multinomial variable in multiple regression.
 To illustrate dummy coding, say the investigator has a multinomial variable indi-
cating the race/ethnicity of people in the sample: White, Latino, African- American, 
and Mixed/Other race. We would create k – 1 number of dummy variables – in this 
case, we might consider creating a dummy variable for White, one for Latino, and 
one for African- American. We do not need to create a dummy variable for Mixed/
Other race since that category is implicit in the other dummy variables (if the subject 
is not White, or Latino, or African- American, they must be Mixed/Other race). The 
category that is not dummy coded is called the reference group (in our example, 
Mixed/Other race). For some regression applications, the category chosen as the ref-
erence group is not important. However, there are instances when choice of the ref-
erence group can provide pertinent information in the regression model.
 To dummy code, the race/ethnicity variable, create the three dummy variables 
noted above. This is shown in Table 9.1 on a small sample of 10 cases. If someone is 
White, they are given a “1” for the White dummy variable. If they are not White, 
they are given a “0.” We do the same for the Latino dummy variable, and for the 
African- American dummy variable. Notice that Mixed/Other race membership is 
represented by having all 0’s in the three dummy variables.
 Once the dummy variables have been created, they are used in hierarchical regres-
sion as a “set” to ascertain the unique contribution of the multinomial variable. In 
our working example, the three dummy variables would be entered together as a 
separate model in hierarchical regression to represent race/ethnicity.

Hierarchical versus statistical regression

In developing a regression model (or equation) it is imperative for the investigator 
and not the statistical program to determine the independent variables that make up 
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the prediction model. This approach is called “statistical regression” and, unfortu-
nately, many investigators use this technique when generating their regression model. 
Statistical regression consists of three different analytic methods; forward, back-
ward, and stepwise. Forward regression allows items into the regression equation 
sequentially based solely on an adopted statistical criterion (usually the significance 
of the partial correlation of a predictor with the criterion). Once items are in the 
model, they cannot be removed. Backward regression enters all items into the regres-
sion model, then removes items sequentially based on the assigned statistical cri-
terion. The stepwise approach combines both the forward and backward 
approaches; items are sequentially entered into the regression model based on a sta-
tistical criterion, and in later models items are evaluated for removal using a different 
criterion. The key in all of these approaches is that variable inclusion and exclusion 
is driven solely by the statistical criterion adopted, and not by the researcher.
 Statistical regression has a number of drawbacks, and therefore we cannot recom-
mend the technique. First, the resulting model may be nonsensible, meaning that the 
final variables chosen based on the statistical criterion may not make theoretical 
sense. Second, the statistical criterion used to select variables may be too liberal, 
with too many variables included in the model. Third, the statistical criterion used to 
select variables may be too conservative, with too few variables included in the 
model. Fourth, researchers sometimes overemphasize the final model as being 
correct, when in fact it was generated solely on the basis of the statistic criterion and 
the sample data. If another sample were drawn from the same population, there is a 
good chance that statistical regression would generate different results. Fifth, for 
some forms of statistical regression (i.e., forward regression), variables in the model 
may become nonsignificant after other variables enter the model, but are neverthe-
less retained because of the analytic approach. Sixth, it is also interesting to consider 
that oftentimes the independent variable(s) selected by the statistical criterion may 
not be physiologically justified.
 Hierarchical regression requires the investigator to plan or justify the order of 
entry for each independent variable. Kerlinger (6) stated that, “the research problem 
and the theory behind the problem should determine the order of entry of variables 
in multiple regression analysis” (p. 545). Examples of hierarchical regression are the 

Table 9.1 Dummy coding example using race/ethnicity as the categorical variable

Subject Race/ethnicity Dummy variables

White Latino African-American

 1 White 1 0 0
 2 White 1 0 0
 3 White 1 0 0
 4 Latino 0 1 0
 5 Latino 0 1 0
 6 African-American 0 0 1
 7 African-American 0 0 1
 8 African-American 0 0 1
 9 Mixed/Other 0 0 0
10 Mixed/Other 0 0 0
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two nonexercise- based V·o2 max prediction models by Malek and colleagues (13, 14). 
In both studies, the investigators initially entered traditional predictors such as age, 
height, and weight into the model and then entered habitual physical activity indices 
such as duration and intensity of their exercise. The goal of the investigators was to 
determine the unique contribution of habitual physical activity above and beyond 
the usual predictor variables used to predict V·o2 max.

Research questions

The research questions that can be answered using multiple regression with con-
tinuous variables can be adopted for categorical variables. In addition, curvilinear 
regression may be used, for example, to develop prediction models for body com-
position equations using skinfold measurement (7, 8). More recently, curvilinear 
regression has been used in neuromuscular studies by Malek and Coburn (1–5, 9–12, 
15) to describe the patterns of responses for electromyographic and mechanomyo-
graphic responses versus power (or torque) output during various exercise perturba-
tions for the three superficial quadriceps muscles.
 The output below uses curvilinear regression based on powered vectors to deter-
mine the patterns of responses for electromyographic amplitude during incremental 
cycle ergometry. It should be noted that the term “normalized” indicates that each 
subject’s data were adjusted relative to their maximal value and then multiplied by 
100. For example, if a subject achieved a maximal power output of 200 watts, and 
data were recorded at 80, 110, 140, 170, and 200 watts, then the normalized power 
output would be 40, 55, 70, 85, and 100 percent. Thereafter, the normalized output 
can either squared (x2) or cubed (x3) in order to develop the quadratic or cubic 
model, respectively.

Using SPSS pulldown menu for curvilinear (powered vectors) 
regression analysis

1. Click Analyze, then move cursor over Regression, and then move cursor over 
Linear and left click.

2. Click EMG_amplitude_data_normalized and move to Dependent box.
3. Click Normalized_Power_Output and move to Independent(s) box.
4. Click Next.
5. Click Normalized_Power_Output_squared_X2 and move to Independent(s) box.
6. Click Next.
7. Click Normalized_Power_Output_cubed_X3 and move to Independent(s) box.

a. You should be on Block 3 of 3.

8. Click OK.

Syntax for SPSS curvilinear (powered vectors) regression analysis

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA CHANGE
/CRITERIA=PIN(.05) POUT(.10)
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/NOORIGIN
/DEPENDENT EMG_amplitude_data_normalized
/METHOD=ENTER Normalized_Power_Output
/METHOD=ENTER Normalized_Power_Output_squared_X2
/METHOD=ENTER Normalized_Power_Output_cubed_X3.

Interpreting SPSS curvilinear (powered vectors) regression analysis

As shown in Table 9.2, this output indicates that each independent variable was 
entered (i.e., “Enter”) into the model. Models 2 and 3 represent the quadratic and 
cubic models respectively.
 As shown in Table 9.3, the Model Summary indicates whether or not the change in 
the R- square value is statistically significant. As shown in Model 3, the R- square 
change was not significantly (Sig. F. change = 0.087) different from Model 2. Therefore, 
in the present example, the quadratic model (Model 2) best- fit the relationship between 
normalized power output and normalized electromyographic amplitude.
 As shown in Table 9.4, therefore using the values, from Model 2, in the “B” column, 
the powered vector model for this analysis would be: Y = 0.241 + 0.001(x) + 0.736(x2).

Table 9.2  Variables entered/removed, reprint courtesy of International Business Machines 
Corporation

Variables Entered/Removeda

Model Variables entered Variables removed Method

1 Normalized_Power_Output Enter
2 Normalized_Power_Output_squared_X2 Enter
3 Normalized_Power_Output_cubed_X3 Enter

Source: © International Business Machines Corporation.

Note
a Dependent Variable: EMG_amplitude_data_normalized.

Table 9.3 Model summary, reprint courtesy of International Business Machines Corporation
Model Summary

Model R R-square Adjusted 
R-square

Std. error of 
the estimate

Change statistics

R-square 
change

F 
change

df1 df2 Sig. F 
change

1 .929a .864 .862 .0933202555 .864 715.902 1 113 .000
2 .946b .896 .894 .0819358494 .032  34.583 1 112 .000
3 .948c .899 .896 .0812177136 .003  2.989 1 111 .087

Source: © International Business Machines Corporation.

Notes
a Predictors: (Constant), Normalized_Power_Output.
b Predictors: (Constant), Normalized_Power_Output, Normalized_Power_Output_squared_X2.
c Predictors: (Constant), Normalized_Power_Output, Normalized_Power_Output_squared_X2, 

Normalized_Power_Output_cubed_X3.
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Write- up for curvilinear (powered vectors) regression analysis

In the current study, curvilinear regression applying powered vectors was used to deter-
mine the relationship between normalized EMG amplitude versus power output. The 
results indicated that the best- fit model was quadratic (R = 0.946, p < 0.001) for the 
composite data.

Using SPSS pulldown menu for regression analysis with dummy coding

 1. Click Analyze, then move cursor over Regression, and then move cursor over 
Linear and left click.

 2. Click Vo2max_ml and move to Dependent box.
 3. To move the variables dummy coded for race:

a. Click on “White.”
b. Hold down the Shift key.
c. Click on “African_American.”
d. This will highlight the three dummy coded categories.
e. Move them into Block 1.

 4. Click Next.
 5. Click wt_kg and move to Independent(s) box.
 6. Click ht_meter and move to Independent(s) box.
 7. Click age_yrs and move to Independent(s) box.
 8. Click Next.
 9. Click timeperw and move to Independent(s) box.
10. Click intensity and move to Independent(s) box.

a. You should be on Block 3 of 3.

Table 9.4 Coefficients, reprint courtesy of International Business Machines Corporation
Coefficientsa

Model Unstandardized 
coefficients

Standardized 
coefficients

t Sig.

B Std. error Beta

1 (Constant) .028 .022 1.310 .193
Normalized_Power_Output .882 .033 .929 26.756 .000

2 (Constant) .241 .041 5.900 .000
Normalized_Power_Output .001 .153 .001 .009 .993
Normalized_Power_Output_squared_X2 .736 .125 .945 5.881 .000

3 (Constant) .105 .088 1.191 .236
Normalized_Power_Output .923 .554 .972 1.666 .099
Normalized_Power_Output_squared_X2 –1.009 1.017 –1.296 –.993 .323
Normalized_Power_Output_cubed_X3 .974 .563 1.303 1.729 .087

Source: © International Business Machines Corporation.

Note
a Dependent Variable: EMG_amplitude_data_normalized.
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11. Click Statistics.

a. Make sure the R- squared change box is checked.
b. Click Continue.

12. Click OK.

Syntax for regression analysis with dummy coding

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA CHANGE
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Vo2mx_ml
/METHOD=ENTER White Latino African_American
/METHOD=ENTER wt_kg ht_meter age_yrs
/METHOD=ENTER timeperw intensity.

Interpreting regression analysis with dummy coding

As shown in Table 9.5, this indicates that each independent variable was entered 
into the model. That is, we first accounted for any potential variance accounted for 
by race (Model 1), and then accounted for other variables in Models 2 and 3.
 As shown in Table 9.5, the Model Summary table indicates that race did not 
significantly contribute to the model (p = 0.301), whereas the variables in Models 2 
(p = 0.000, as shown) and 3 (p = 0.001) significantly contributed to the regression 
model. Therefore, Model 3 is the model that best- fits the data.
 As shown in Table 9.7, for Model 3, the variables that significantly contributed to 
the overall regression model are weight, height, age, and intensity of training vari-
ables. Therefore, the final regression equation would only use the coefficient values 
from these variables.

Write- up for curvilinear (powered vectors) regression analysis

The write- up would be similar to the sample write- up in Chapter 8.

Table 9.5  Variables entered/removed, reprint courtesy of International Business Machines 
Corporation

Variables Entered/Removeda

Model Variables entered Variables removed Method

1 African_American, White, Latinob Enter
2 age_yrs, wt_kg, ht_meterb Enter
3 Times/wk_exercise, intensity of subjects training 

(6–20)b
Enter

Source: © International Business Machines Corporation.

Notes
a Dependent Variable: Vo2mx_ml.
b All requested variables entered.
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Note
1.  In some cases, prior to using powered vectors regression the data will need to be centered 

to provide a more logical interpretation of the y- intercept. We refer the reader to Pedhazur 
EJ (Multiple regression in behavioral research. Orlando, FL: Harcourt Brace, 1997).
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Introduction

When developing a prediction model, it is important to then determine if the model is 
valid. The validation of a regression model is important because it allows the investiga-
tor to compare the accuracy of the regression equation for the population used to 
develop the model. Holiday et al. (2) has stated that the “central tenet of cross- 
validation is that the custodians of the model should not release a prediction equation 
to the user community without some assurance that it will do a good job” (p. 616).
 Traditionally, investigators have used data- splitting in which the sample is “split” 
into a derivation and validation group. In this approach, initially introduced by 
Mosier (5) in 1951, the investigator randomly selects cases from the total data set 
and assigns each case into a derivation and validation group. From there, the deriva-
tion group is used to develop the prediction model, whereas the validation group is 
then used to determine the validity of the new equation. Cooil et al. (1) stated that, 
“sample- splitting is not an efficient approach to cross-validation … it can lead to 
larger prediction errors in the validation stage … and a larger probability of type II 
error in the significance testing of the model” (p. 272).

PRESS statistic

The Predicted Residual Sum of Squares (PRESS) statistic is an attractive alternative 
to model validation, because it uses the entire data set and, therefore, avoids the 
need to split the data (2). The PRESS approach is similar to the statistical jack- knife 
approach in that it uses N- 1 cases from the sample used to derive the equation (2). 
Therefore, using the PRESS statistic the investigator can estimate an R-squared 
(R2

PRESS) and standard error of estimate (SEEPRESS) value. These values (R2
PRESS and 

SEEPRESS) can be compared with the R2 and SEE values from the regression model to 
determine the validity of the model. For example, Malek and colleagues (4) used the 
PRESS statistic and reported similar R2 (0.67) and SEE values (247 ml min-1) when 
compared to the R2

PRESS (0.63) and SEEPRESS (259 ml min-1), respectively. It should be 
noted, that PRESS values were not derived from the validation group, but from the 
original sample used to generate the regression model. Holiday et al. stated, “The 
PRESS statistic and associated residuals do not require the data to be split, [and] 
yield alternative unbiased estimates of R2 and SEE” (p. 612). Therefore in the 
example above, Malek et al. (4) concluded that their new equation for predicting 
V·o2 max had high generalizability for the population of aerobically trained women.
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Indices of validation

When validating a new regression model or cross- validating an existing equation 
there are a number of indices which traditionally have been used in the exercise 
science literature. The constant error (CE) is an index which examines the difference 
between the predicted and observed value. This value can be calculated for each 
subject.

CE = Observedvalue – Predictedvalue (Equation 1)

Another index is the total error (TE, equation 2) which is the best single criterion for 
determining the accuracy of an equation. As shown below, the TE combines the 
errors associated with the SEE (standard error of the estimate) and CE (3). Unfortu-
nately, this function cannot be performed in SPSS, but can be calculated in Excel 
with the appropriate column values and calculation functions indicated in the 
formula.

 (Equation 2)

The Bland- Altman plot is a visual approach used to determine the agreement 
between two different variables (i.e., observed V·o2 max and predicted V·o2 max). 
Typically, a scatter plot is used to shown the scores with a line of identity from the 
origin which indicates agreement of the scores. Therefore, the more centralized the 
scores around the origin, the stronger the agreement between the scores. The Bland- 
Altman plot also allows the investigator to examine the spread (or variability) of the 
scores. This is achieved by examining the 95 percent limits of agreement which is ± 2 
standard deviations. Therefore, if the majority of scores are outside this range, then 
the two measures have poor agreement and cannot be used in place of the other.

Research questions

The research question that can be answered is whether a newly developed prediction 
model or an existing model is valid. In the latter case, when validating an existing 
equation this is called cross‑validation.

Sample write- up

There is no specific format to write the results of this section. Typically, you would 
report the PRESS statistic after you have reported the results of the regression ana-
lysis. For example, you may use the following phrase to describe the result of the 
PRESS statistic, “In order to validate our regression model, we performed the PRESS 
statistic. The results indicated that the R2

PRESS = 0.51 which was close to the R2 value 
from the model (R2 = 0.53).”
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Introduction

Logistic regression is similar to the previously discussed regression analyses such 
that it is used to predict an outcome. The one major difference between the typical 
ordinary least squares (OLS) regression model and logistic regression is that the 
dependent variable in the latter is binary or multinomial (i.e., categorical). That is, 
the outcome variable is discrete such as yes or no, or in a multinomial example, 
multiple categories (for example, types of “attack players” in volleyball; see 
Marcelino et al. [2]). Logistic regression can provide the probability or odds of an 
event occurring or not occurring. For example, it may be used to predict whether 
various factors will increase the risk of having a stroke. In this case, the outcome 
variable, stroke, is binary – either yes it will occur or no it will not occur. Alterna-
tively, logistic regression could be used to determine what factors contribute to 
whether or not students in a clinical program such as physical therapy will pass or 
fail their state licensing board examination, or tactical factors contributing to 
success of attack players in volleyball. Essentially, application of logistic regres-
sion is similar to OLS regression, but with a categorical outcome.1

 Besides categorical outcomes, how else does logistic regression differ from 
standard OLS regression? In OLS regression, significance of the overall regression 
model is assessed using F at the p < 0.05 or better level, testing to see if there is a 
significant amount of variability in the outcome variable accounted for by the 
linear combination of predictor variables (significance indicates the model R2 
exceeds an R2

pop = 0). Logistic regression takes a slightly different approach due to 
the nature of the categorical outcome utilizing a maximum- likelihood approach. 
Applying maximum- likelihood, the predictors and outcome (binary or multino-
mial) are used to derive a set of predicted data- points which are then compared to 
the observed data- points. Significance of the overall logistic regression model is 
assessed using χ2 at the p < 0.05 or better level, testing to see if “fit” of the pre-
dicted data to the observed data is superior to a model with no predictors (known 
as a null hypothesis model). A significant χ2 indicates the hypothesized model is 
superior to the null hypothesis model.
 As stated earlier, logistic regression can be applied just like OLS regression. 
Various outcomes can be modeled using individual predictors, or a set of predic-
tors. Hierarchical models that are researcher driven can be designed, as can 
exploratory statistical models (e.g., stepwise). Individual predictors can be evalu-
ated for their contribution and importance in hypothesized models. In addition, 
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logistic regression can be used to predict group membership – in such applications 
models are built to enhance classification results.

Research questions

As discussed in the introduction section, the types of research questions answered 
by using logistic regression are those that have a dichotomous outcome (i.e., yes/
no), or are multinomial (three or more categories). The independent variables, 
however, do not need to be dichotomous. For example, we may use predictors 
such as resting heart rate, maximal heart rate, total blood cholesterol, and stress 
level to predict whether or not a person will have a heart attack or not. As in OLS 
regression, however, categorical predictors with three or more levels need to be 
specially coded (e.g., dummy coded, effect coded) prior to use.
 There are a number of statistical assumptions associated with logistic regression 
which are similar to OLS regression. As with all of the tests covered in this textbook, 
many of these assumptions will be familiar to you, and thus not assessed here. They 
include an adequate sample size, linearity of the predictors and the logit- transformed 
outcome (but avoid multicollinearity of the predictors), and absence outliers in each 
level of the outcome variable for the predictors.
 In the example below, the researcher is predicting whether or not subjects can be 
categorized into having severe or moderate muscle weakness in the quadriceps 
femoris muscles by using predictors such as time in physical therapy since they were 
diagnosed for muscle weakness, and whether or not they are currently diabetic. We 
purposefully kept this example simple to provide a clear and concise approach of 
presenting the statistical output. That is, with additional predictor variables (cate-
gorical and/or continuous) the output can become more complex to interpret espe-
cially in cases where the researcher is new to using this logistic regression.

Using SPSS pulldown menu for logistic regression

1. Click Analysis, then move cursor over Regression, and then move cursor over 
Binary Logistic and left click.

2. Click level_of_muscle_weakness and move to Dependent box.
3. Click time_in_physical_therapy and move to Block 1 of 1.
4. Click diabetic and move to Block 1 of 1.
5. Note: The “Categorical” does not need to be used in this example, however, 

when a predictor variable has three or more categories such as exercise intensity 
(low, moderate, and high) then the “Categorical” button can be used.

6. Click Save.

a. Check box for Probabilities.
b. Check box for Group membership.
c. Click Continue.

7. Click Options.

a. Check box for Classification plots.
b. Check box for Hosmer- Lemeshow goodness- of-fit (an additional model- fit 

test).
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c. Note: The researcher can change the Probability for Stepwise values which 
are defaulted to Entry = 0.05 Removal = 0.10 in cases which are justified. 
Also the Maximum Iterations values is set at a default value of 20, but that 
can also be changed by the researcher in cases which are justified.

d. Click Continue.

8. Click OK.

Syntax for SPSS for logistic regression

LOGISTIC REGRESSION VARIABLES Muscle_Weakness
/METHOD=ENTER Time_in_physical_therapy Diabetic
/SAVE=PRED PGROUP
/CLASSPLOT
/PRINT=GOODFIT
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Interpreting the output for logistic regression

As shown in Tables 11.1 and 11.2, respectively, SPSS will initially provide informa-
tion regarding how many cases will be used as well as information about the 
dependent variable. In this example, therefore, we have 80 cases with no missing 
data, and the dependent variable is categorical (40 with severe muscle weakness, and 
40 with moderate muscle weakness).

Table 11.1  Case processing summary, reprint courtesy of International Business Machines 
Corporation

Case Processing Summary

Unweighted casesa N Percent

Selected cases Included in analysis 80 100.0
Missing cases  0 .0
Total 80 100.0

Unselected cases  0 .0
Total 80 100.0

Source: © International Business Machines Corporation.

Note
a If weight is in effect, see classification table for the total number of cases.

Table 11.2  Dependent variable encoding, reprint courtesy of International Business Machines 
Corporation

Dependent Variable Encoding

Original value Internal value

severe 0
moderate 1

Source: © International Business Machines Corporation.
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 Table 11.3 (Block 0) provides information about the model in which there are no 
predictor values and, therefore, would be akin to the null hypothesis (where no pre-
dictors significantly contributed to the criterion variable). Nevertheless, the table 
indicates what would be the predictive power of the model if all subjects were in the 
default group (i.e., moderate muscle weakness). In this example, the overall predic-
tive capacity of the model is 50 percent. This makes sense since half of our study 
subjects are severe in muscle weakness, while the other half are moderate – the tech-
nique with no predictors in the model merely places everyone into the moderate 
category, yielding the 50 percent success rate.
 Table 11.4 (Block 1) provides information about the model containing the two pre-
dictors. The Omnibus Tests of Model Coefficients is akin to the overall significant test 
seen in the regression chapter. Therefore, the significant values indicate that the two 
predictors are contributing to the model. Table 11.5 (Model Summary) provides 
information regarding the predictive capacity of this model. The “−2 Log likelihood” 
is akin to a chi- square, whereas the two R- square values (referred to as pseudo R2’s) 
are similar to the R-square values in multiple regression with the caveat that the values 
in Table 11.3 are calculated using maximum- likelihood least squares instead of the 
ordinary least squares which is typically used in multiple regression. Nevertheless, most 
researchers will report the “Nagelkerke R- square” rather than the “Cox & Snell 
R- Square” value, because the former is based on a scale ranging from 0 to 1.0, whereas 

Table 11.3  Block 0: beginning block, reprint courtesy of International Business Machines 
Corporation

Block 0: Beginning Block
Classification Tablea,b

Observed Predicted level of muscle 
weakness

Percentage 
correct

Severe Moderate

Step 0 Level of muscle weakness Severe 0 40 .0
Moderate 0 40 100.0

Overall percentage 50.0

Source: © International Business Machines Corporation.

Notes
a Constant is included in the model.
b The cut value is .500.

Table 11.4  Block 1: method = enter, reprint courtesy of International Business Machines 
Corporation

Block 1: Method = Enter
Omnibus Tests of Model Coefficients

Chi-square df Sig.

Step 1 Step 81.385 2 .000
Block 81.385 2 .000
Model 81.385 2 .000

Source: © International Business Machines Corporation.
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the latter has a maximum value of 0.75 (in the present example, the “Nagelkerke 
R- square” is greater than the “Cox & Snell R- Square” value).
 The “Hosmer and Lemeshow Test” which is shown in Table 11.6 is not significant 
(p > 0.05), which is a good thing as we want this type of model test to be nonsignificant. 
The finding of this test indicates the observed rate of events matches the expected rate of 
events. Thus, a nonsignificant finding indicates the observed and expected rate of events 
are similar. The “Contingency Table for Hosmer and Lemeshow Test” (Table 11.7) 
provides information similar to the crosstabs. The table applies the resulting muscle 
weakness grouping strategy (based on the model) into nine percentiles, which allows for 
comparisons of the observed and expected cell frequencies for fit. For example, Step 4 
for the severe muscle weakness group shows an observed cell frequency of 8 and an 

Table 11.5  Model summary, reprint courtesy of International Business Machines Corporation
Model Summary

Step –2 Log likelihood Cox & Snell R-square Nagelkerke R-square

1 29.519a .638 .851

Source: © International Business Machines Corporation.

Note
a Estimation terminated at iteration number 6 because parameter estimates changed by less than .001.

Table 11.6  Hosmer and Lemeshow test, reprint courtesy of International Business Machines 
Corporation

Hosmer and Lemeshow Test

Step Chi-square df Sig.

1 12.552 7 .084

Source: © International Business Machines Corporation.

Table 11.7  Contingency table for Hosmer and Lemeshow test, reprint courtesy of Inter-
national Business Machines Corporation

Contingency Table for Hosmer and Lemeshow Test

Level of muscle 
weakness = severe

Level of muscle  
weakness = moderate

Total

Observed Expected Observed Expected

Step 1 1 11 10.869 0 .131 11
2 8 7.816 0 .184 8
3 8 7.675 0 .325 8
4 8 7.616 0 .384 8
5 3 3.934 4 3.066 7
6 1 1.393 10 9.607 11
7 0 .472 8 7.528 8
8 0 .142 6 5.858 6
9 1 .083 12 12.917 13

Source: © International Business Machines Corporation.
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expected cell frequency of 7.616. Both are similar suggesting good fit. Looking across 
the table, all of the observed and expected cell frequencies are very similar (see Hosmer 
and Lemeshow [1], for additional information on table interpretation).
 The “Classification Table” (Table 11.8) shows great improvement over the null 
hypothesis model. Table 11.8 shows 38 subjects predicted to have severe muscle weak-
ness, whereas 40 subjects were predicted to have moderate muscle weakness. The 
“Percentage correct” column indicates that the prediction for the two categories is high 
(95 and 100 percent, respectively). Moreover, the overall predictive capacity of the 
model is 97.5 percent which is greater than the 50 percent value for the overall predic-
tive capacity shown in Table 11.3.
 The “Variables in the Equation” (Table 11.9) is similar to the “Coefficients” table 
when performing OLS regression. That is, of the two predictors (time in physical 
therapy and currently diabetic) only the time in physical therapy significantly con-
tributed to the model as a predictor. The predictor of whether or not the subject is cur-
rently diabetic did not significantly contribute to the model (p = 0.883). When 
interpreting the column labeled “Exp(B)” in the table, for every unit of increase physical 
therapy time, the odds of being in the moderate muscle weakness category increases 
1.965 times. This shows the benefits of physical therapy in terms of reducing pain. That 
is, the longer one is in physical therapy the more likely they will be in the moderate 
muscle weakness category. Since being a diabetic isn’t a significant predictor, the odds 
are not interpreted.

Table 11.8  Classification table, reprint courtesy of International Business Machines Corporation
Classification Tablea

Observed Predicted level of muscle 
weakness

Percentage 
correct

Severe Moderate

Step 1 Level of muscle weakness Severe 38  0 95.0
Moderate  0 40 100.0

Overall percentage 97.5

Source: © International Business Machines Corporation.

Note
a The cut value is .500.

Table 11.9  Variables in the equation, reprint courtesy of International Business Machines 
Corporation

Variables in the Equation

B S.E. Wald df Sig. Exp(B)

Step 1a Time in physical therapy .676 .140 23.305 1 .000 1.965
currently diabetic (yes/no) .175 1.187 .022 1 .883 1.191
Constant –5.190 1.352 14.731 1 .000 .006

Source: © International Business Machines Corporation.

Note
a Variable(s) entered on step 1: time in physical therapy, currently diabetic (yes/no).
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  Although the overall model is good based on the chi- square test of the model 
coefficients and the Hosmer and Lemeshow test, only time in physical therapy is a 
solid predictor. If our research interest was to broadly model muscle weakness cat-
egories, then the significance of the individual predictors isn’t as important as the 
overall model findings. However, in most instances, researchers report both the 
overall model findings and individual predictor results.

Sample write- up for logistic regression

Logistic regression was performed using two groups of subjects as the outcome; 40 
individuals having severe muscle weakness in the quadriceps femoris muscles, and 40 
individuals having moderate muscle weakness. Two variables were investigated as pre-
dictors of muscle weakness category: time in physical therapy since they were diag-
nosed for muscle weakness, and whether or not they are currently diabetic. A logistic 
regression model with the two predictors was significant, χ2 (2, N = 80) = 81.385, 
p < 0.05, with a Nagelkerke pseudo R2 of 0.85. The Hosmer and Lemeshow test also 
showed the model to be acceptable, χ2 (7, N = 80) = 12.552, p = 0.084. Model classifica-
tion results were good, with 97.5 percent of the cases correctly classified per their 
observed categories. Looking at the individual regression coefficients, according to the 
Wald criterion, only time in physical therapy was significant, χ2 (1, N = 80) = 23.305, 
p < 0.05. The odds ratio for this predictor shows that for every unit of increase in phys-
ical therapy time, individuals are 1.965 times more likely to be in the moderate muscle 
weakness group than the severe muscle weakness group. Overall, the model with two 
predictors did well to predict those with severe and moderate muscle weakness. These 
findings also underscore the importance of time in physical therapy, that is, with longer 
periods leading to a greater likelihood of being in the moderate muscle weakness group 
instead of severe weakness group.

Example 2 (hierarchical logistic regression)

In this second example, the researcher extends the aim of the above example by insert-
ing another predictor variable. Specifically, the researcher is interested in knowing 
whether or not the patient’s habitual exercise history is a predictor for determining their 
muscle weakness. The predictor variable, therefore, is the number of 30-minute walks 
the patient performs on a weekly basis during the last 2 years. Moreover, the researcher 
is interested in knowing if accounting for this variable would influence the contribution 
of the other two predictors: time in physical therapy and whether or not the patient is 
diabetic. Thus, the researcher will need to perform a hierarchical logistic regression.

Using SPSS pulldown menu for logistic regression (example 2)

1. Click Analysis, then move cursor over Regression, and then move cursor over 
Binary Logistic and left click.

2. Click level_of_muscle_weakness and move to Dependent box.
3. Click number_of_30_min_walks_weekly and move to Block 1 of 1.
4. Click Next.

a. Click time_in_physical_therapy and move to Block 2 of 2.
b. Click diabetic and move to Block 2 of 2.
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5. Click Save.

a. Check box for Probabilities.
b. Check box for Group membership.
c. Click Continue.

6. Click Options.

a. Check box for Classification plots.
b. Check box for Hosmer- Lemeshow goodness- of-fit (an additional model- fit 

test).
c. Note: The researcher can change the Probability for Stepwise values which 

are defaulted to Entry = 0.05 Removal = 0.10 in cases which are justified. 
Also the Maximum Iterations value is set at a default value of 20, but that 
can also be changed by the researcher in cases which are justified.

d. Click Continue.

7. Click OK.

Syntax for SPSS for logistic regression (example 2)

LOGISTIC REGRESSION VARIABLES Muscle_Weakness
/METHOD=ENTER number_of_30_min_walks_weekly
/METHOD=ENTER Time_in_physical_therapy Diabetic
/SAVE=PRED PGROUP
/CLASSPLOT
/PRINT=GOODFIT
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Interpreting the output for hierarchical logistic regression

Tables 11.10 and 11.11, respectively, are identical to Tables 11.1 and 11.2 and, 
therefore, provide the same relevant information.
 Table 11.12 (Block 0) again provides the same information about Table 11.3. 
That is, in a model with no predictors the overall predictive capacity of the model is 
50 percent.

Table 11.10  Case processing summary, reprint courtesy of International Business Machines 
Corporation

Case Processing Summary

Unweighted casesa N Percent

Selected cases Included in analysis 80 100.0
Missing cases 0 .0
Total 80 100.0

Unselected cases 0 .0
Total 80 100.0

Source: © International Business Machines Corporation.

Note
a If weight is in effect, see classification table for the total number of cases.
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 Table 11.13 (Block 1) provide information about the model containing the single 
predictor (habitual exercise activity). As noted earlier, the Omnibus Test of Model 
Coefficients is an overall significance test. Thus, the significant values indicated that 
the single predictor is contributing to the model. Table 11.14 (Model Summary) pro-
vides information regarding the predictive capacity of this model. The “Nagelkerke 
R- square” rather than the “Cox & Snell R- Square” value is the pseudo R- square 
value to be evaluated because the former is based on a scale ranging from 0 to 1.0, 
whereas the latter has a maximum value of 0.74.
 The “Hosmer and Lemeshow Test” (Table 11.15) indicates a nonsignificant 
finding (p = 0.831). This indicates the observed rate of events matches the expected 
rate of events. The “Contingency Table for Hosmer and Lemeshow Test” (Table 
11.16) shows that the observed cell frequencies (for either the severe or moderate 
muscle weakness groups) compare well to the expected cell frequencies.
 The “Classification Table” (Table 11.17) shows a great improvement over the 
null hypothesis model. Table 11.17 shows 31 subjects predicted to have severe 
muscle weakness, whereas 37 subjects were predicted to have moderate muscle 
weakness. The “Percentage correct” column indicates that the prediction for the two 
categories is high (77.5 and 92.5 percent, respectively). In addition, the overall pre-
dictive capacity of the model is 85.0 percent which is greater than the 50 percent 
value for the overall predictive capacity shown in Table 11.12.

Table 11.11  Dependent variable encoding, reprint courtesy of International Business Machines 
Corporation

Dependent Variable Encoding

Original value Internal value

severe 0
moderate 1

Source: © International Business Machines Corporation.

Table 11.12  Block 0: beginning block, reprint courtesy of International Business Machines 
Corporation

Block 0: Beginning Block
Classification Tablea,b

Observed Predicted level of muscle 
weakness

Percentage 
correct

Severe Moderate

Step 0 Level of muscle weakness Severe 0 40 .0
Moderate 0 40 100.0

Overall percentage 50.0

Source: © International Business Machines Corporation.

Notes
a Constant is included in the model.
b The cut value is .500.
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Corporation

Block 1: Method = Enter
Omnibus Tests of Model Coefficients

Chi-square df Sig.

Step 1 Step 64.953 1 .000
Block 64.953 1 .000
Model 64.953 1 .000

Source: © International Business Machines Corporation.

Table 11.14  Model summary, reprint courtesy of International Business Machines Corporation
Model Summary

Step –2 Log likelihood Cox & Snell R-square Nagelkerke R-square

1 45.950a .556 .741

Source: © International Business Machines Corporation.

Note
a Estimation terminated at iteration number 7 because parameter estimates changed by less than .001.

Table 11.15  Hosmer and Lemeshow test, reprint courtesy of International Business Machines 
Corporation

Hosmer and Lemeshow Test

Step Chi-square df Sig.

1 1.478 4 .831

Source: © International Business Machines Corporation.

Table 11.16  Contingency table for Hosmer and Lemeshow test, reprint courtesy of Inter-
national Business Machines Corporation

Contingency Table for Hosmer and Lemeshow Test

Level of muscle weakness = severe Level of muscle weakness = moderate Total

Observed Expected Observed Expected

Step 1 1 12 11.904 0 .096 12
2 19 19.833 3 2.167 22
3 9 7.659 10 11.341 19
4 0 .570 12 11.430 12
5 0 .033 9 8.967  9
6 0 .002 6 5.998  6

Source: © International Business Machines Corporation.
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 The “Variables in the Equation” (Table 11.18) indicates that the habitual exercise 
activity predictor did significantly contribute to the model. Moreover, interpreting 
the odds labeled “Exp(B)” in the table, for every unit of increased habitual exercise 
activity, the odds of being in the moderate muscle weakness category increases 
13.549 times.
 We next add the original two predictors from Example 1 as a block into the 
model to evaluate their effects after accounting for habitual exercise activity. As 
shown in Figure 11.1, for Block 2, the overall model is significant, χ2 (3, 
N = 80) = 92.785, with a strong Nagelkerke R- square. Thus, a model with all three 
variables is tenable. Because the model is hierarchical, we can also directly evaluate 
whether the two added variables significantly contribute to the overall model with 
habitual exercise activity already in the model. The line labeled “Block” shows χ2 (2, 
N = 80) = 27.831, p < 0.001; above and beyond the initial model with habitual exer-
cise activity, the addition of time in physical therapy and diabetic diagnosis as a 
block significantly contribute to the model.
 We can now return to the overall model findings. Figure 11.2 shows the “Hosmer 
and Lemeshow Test,” the “Contingency Table for Hosmer and Lemeshow Test,” 
and the “Classification Table.” The Hosmer and Lemeshow Test shows a nonsignifi-
cant finding (p = 0.547) indicating the observed rate of events matches the expected 
rate of events. A review of the contingency table indicates good fit between the 
observed and expected cell frequencies. The “Classification Table” indicates that the 

Table 11.17  Classification table, reprint courtesy of International Business Machines 
Corporation

Classification Tablea

Observed Predicted level of muscle 
weakness

Percentage 
correct

Severe Moderate

Step 1 Level of muscle weakness Severe 31  9 77.5
Moderate  3 37 92.5

Overall percentage 85.0

Source: © International Business Machines Corporation.

Note
a The cut value is .500.

Table 11.18  Variables in the equation, reprint courtesy of International Business Machines 
Corporation

Variables in the Equation

B S.E. Wald df Sig. Exp(B)

Step 1a Number_of_30_min_walks_weekly  2.606  .609 18.327 1 .000 13.549
Constant –4.820 1.150 17.562 1 .000 .008

Source: © International Business Machines Corporation.

Note
a Variable(s) entered on step 1: number_of_30_min_walks_weekly.
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predictive capacity of the model is 97.5 percent which is greater than the 50 percent 
value for Block 0 and the 85 percent value for Block 1.
 As shown in Table 11.19, of the three predictors in the model, habitual exercise 
activity (p = 0.023), time in physical therapy (p = 0.001), and currently diabetic 
(p = 0.318), the first two significantly contribute to the model. Importantly, a closer 
examination of the “Exp(B)” column indicates that for every one unit of increase in 
habitual exercise activity, the odds of being in the moderate muscle weakness category 
increases to 14.734, and for every one unit of increase in physical therapy time, the 
odds of being in the moderate muscle weakness category increases 1.785 times. As with 
our first example, this second example again shows the benefits of physical therapy in 
terms of reducing pain. That is, the longer one is in physical therapy the more likely 
they will be in the moderate muscle weakness category. Moreover, having a greater 
impact is habitual exercise activity. That is, those with a history of walking regularly 
are more likely to experience moderate muscle weakness.

Block 2: Method = Enter
Omnibus Tests of Model Coefficients

Step 1 Step

Chi-square df Sig.

Block

Model

27.831

27.831

92.785

2

2

2

.000

.000

.000

Model Summary

a. Estimation terminated at iteration number 8 because
    parameter estimates changed by less than .001.

Step

1

–2 Log
likelihood

Cox & Snell R
Square

Nagelkerke R
Square

18.119a .686 .915

Figure 11.1  Block 2: method = enter, reprint courtesy of International Business Machines 
Corporation.

Source: © International Business Machines Corporation.

Table 11.19  Variables in the equation, reprint courtesy of International Business Machines 
Corporation

Variables in the Equation

B S.E. Wald df Sig. Exp(B)

Step 1a Number_of_30_min_walks_weekly 2.690 1.183 5.171 1 .023 14.734
Time in physical therapy .579 .180 10.400 1 .001 1.785
Currently diabetic (no/yes) 1.471 1.472 .999 1 .318 4.352
Constant –9.842 3.257 9.134 1 .003 .000

Source: © International Business Machines Corporation.

Note
a Variable(s) entered on step 1: time in physical therapy, currently diabetic (no/yes).
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Sample write- up for logistic regression (example 2)

Hierarchical logistic regression was performed using two groups of subjects as the 
outcome; 40 individuals having severe muscle weakness in the quadriceps femoris 
muscles, and 40 individuals having moderate muscle weakness. Three variables were 
investigated as predictors of muscle weakness category: habitual exercise history 
operationalized as the number of 30-minute walks per week, time in physical therapy 
since they were diagnosed for muscle weakness, and whether or not they are cur-
rently diabetic. Hierarchical logistic regression was performed, first evaluating habit-
ual exercise history as a single predictor of muscle weakness category, then 
evaluating time in physical therapy and diabetic diagnosis as predictors. The first 
model with habitual exercise activity was significant, χ2 (1, N = 80) = 64.953, 

Contingency Table for Hosmer and Lemeshow Test

Hosmer and Lemeshow Test

Step 1 1

Level of muscle weakness =
severe

Level of muscle weakness =
moderate

TotalExpectedExpected ObservedObserved

2

3

4

5

6

7

8

9

10

8

7

9

7.998

6.991

8.954

8

7

9

.002

.009

.046

0

0

0

8

6

0

8.730

6.127

1.028

9

8

8

.270

1.873

6.972

0

2

8

1

0

0

.141

.029

.002

8

8

8

7.859

7.971

7.998

7

8

8

0 .000 77.0007

a. The cut value is .500

Step Chi-square df Sig.

6.906 8 .5471

Classification Tablea

Step 1 Level of muscle weakness

Predicted

Percentage
CorrectModerateSevere

Level of muscle weakness

Observed

Overall Percentage

Severe

Moderate

97.5

97.5

97.5

1

39

39

1

Figure 11.2  Hosmer and Lemeshow test, reprint courtesy of International Business Machines 
Corporation.

Source: © International Business Machines Corporation.
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p < 0.001, with a Nagelkerke pseudo R2 of 0.741. The Hosmer and Lemeshow test 
also showed the model to be acceptable, χ2 (4, N = 80) = 1.478, p = 0.831. Model clas-
sification results were good, with 85 percent of the cases correctly classified per their 
observed categories. Looking at the individual regression coefficients, according to 
the Wald criterion, habitual exercise history (i.e., 30-minute walks per week) was 
significant, χ2 (1, N = 80) = 18.327, p < 0.001. The odds ratio for this predictor shows 
that for every unit of increase in 30-minute walks per week, individuals are 13.549 
times more likely to be in the moderate muscle weakness group than the severe 
muscle weakness group.
 A second set of predictors was next added to the model; time in physical therapy 
and whether or not they are currently diabetic. These two variables as a block added 
significantly to the earlier model with habitual exercise activity as the sole predictor, 
χ2 (2, N = 80) = 27.831, p < 0.001. With all three variables included, the overall model 
was good, χ2 (3, N = 80) = 92.785, p < 0.001, supported by the Hosmer and Leme-
show test, χ2 (8, N = 80) = 6.906, p = 0.547, and a Nagelkerke R Square value of 
0.915. Model classification results improved, with 97.5 percent of the cases correctly 
classified per their observed categories. Looking at the individual regression coeffi-
cients, according to the Wald criterion, habitual exercise history (i.e., 30-minute 
walks per week) remained significant, χ2 (1, N = 80) = 5.171, p = 0.023. The odds ratio 
for this predictor shows that for every unit of increase in 30-minute walks per week, 
individuals are 14.734 times more likely to be in the moderate muscle weakness 
group than the severe muscle weakness group. In addition, time in physical therapy 
was significant, χ2 (1, N = 80) = 10.40, p = 0.001. The odds ratio for this predictor 
shows that for every unit of increase in physical therapy time, individuals are 1.785 
times more likely to be in the moderate muscle weakness group than the severe 
muscle weakness group. Overall, the model with all three predictors did well to 
predict those with severe and moderate muscle weakness. In particular, higher levels 
of habitual exercise activity and time in physical therapy led to a greater likelihood 
of being in the moderate muscle weakness group instead of the severe weakness 
group.

Note
1.  We often get asked by students and colleagues why one can’t use binary outcomes in OLS 

regression since such variables are often used as predictors. In the circumstance of a binary 
outcome in OLS regression, the resulting predicted values will often exceed the maximum 
outcome value of 1, an impossible value!
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12 Multivariate analysis of variance 
(MANOVA)

Introduction

MANOVA is a statistical procedure to determine mean differences between inde-
pendent groups for more than one dependent variable that is continuous. 
MANOVA, in part, may be viewed as an extension of ANOVA, where only one 
continuous dependent variable is examined. Although MANOVA is not typically 
used in studies examining physiological outcomes, it may be an effective statistical 
tool in the case where multiple dependent variables should be analyzed together. For 
example, the National Football League (NFL) has their annual Combine where elite 
collegiate football players undergo multiple functional tests to determine various 
outcome measures such as speed, agility, power, and strength, Moreover, these 
players are categorized into the positions they play (i.e., linebacker, offensive line, 
running back, etc.). Thus, one potential application of MANOVA may be to deter-
mine whether or not the results of these functional tests are influenced by the posi-
tion the athlete plays.
 Separate ANOVAs could be run using each of these outcome measures separately 
(e.g., separate analyses for speed, agility, power, and strength). However, because 
these outcomes correlate with each other, the findings might be misleading. If group 
differences were found on each of these outcomes, it’s possible the resulting differ-
ences are due to the “shared variance” across the outcomes due to their correlations. 
The advantage of MANOVA is that the overlapping variance is accounted for, 
leading to a more appropriate assessment of group differences.
 Although MANOVA is the appropriate choice over ANOVA when dependent 
variables are correlated, the technique is laden with statistical assumptions from 
both ANOVA and OLS regression. In addition, MANOVA is less robust to assump-
tion violations, and can be less sensitive to revealing group differences than standard 
univariate techniques if dependent variables are not correlated.

Research questions

As noted above, the types of research questions answered by MANOVA are 
similar to those for ANOVA, except that instead of one outcome or dependent 
variable, there are multiple dependent variables that form a multivariate com-
posite. This composite is formed by linearly combining the dependent variables in 
such a way as to maximize group differences. The standard research question 
asks: Do groups differ on the multivariate composite of outcome variables? 
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To this end, a single multivariate test statistic is derived and assessed for signifi-
cance. Follow- up tests for significant multivariate findings are then performed 
using Roy- Bargmann stepdown tests, which are used to discover the dependent 
variable(s) that evidence group differences, adjusting for their variance overlap. 
Group differences on the dependent variables are assessed by entering the 
dependent variables one- at-a- time into the model (i.e., hierarchical entry), with 
each dependent variable acting as a covariate for subsequent dependent variables 
entered into the model.
 There are a number of statistical assumptions associated with MANOVA similar 
to ANOVA. For example, equality of cell sizes, normality, and homogeneity of vari-
ance are all assessed in the typical manner (see Chapter 4). In addition, multivariate 
normality and homogeneity of variance are also assessed. There are also assumptions 
related to multiple regression (covered in Chapter 7) assessed due to the multiple 
dependent variables in the model, including linearity and absence of multicollinear-
ity and singularity. The dependent variables are required to be correlated as well – if 
the outcomes show no correlation, ANOVAs on the dependent variables separately 
are the appropriate approach.
 In the example below, strength and speed are used as dependent variables, 
whereas group is the independent variable. These two variables correlate at  
–0.758. The group variable has two levels (wide receivers and offensive linemen). 
Therefore, in this example, we are performing a one- way MANOVA1 with strength 
and speed as the dependent variables.

Using SPSS pulldown menu for one- way MANOVA (example 1)

1. Click Analyze, then move the cursor over Multivariate then left click.
2. Click Group, then move it to the Fixed Factor(s) box.
3. Holding the CTRL key down, click Strength and Speed and move them to the 

Dependent Variables box.
4. Click Descriptives (in newer versions of SPSS click the Options box).

a. Check the boxes for Descriptive statistics and Homogeneity tests.
b. Click Group, then move to Display Means for box (Note: In the newer 

version of SPSS, you will need to click the EM Means button to perform the 
option below).

i. Then click Compare Main Effects.

 1.  Under Confidence Interval Adjustment select LSD from the pulldown 
menu.

c. Then click Continue.

5. Click Plots.

a. Then click Group and move to Horizontal Axis.
b. Click Add.
c. Click Continue.

6. Click OK.
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Syntax for SPSS for one- way MANOVA (example 1)

GLM Strength Speed BY Group
/METHOD=SSTYPE(3)
/INTERCEPT=INCLUDE
/PLOT=PROFILE(Group) TYPE=LINE ERRORBAR=NO MEANREFERENCE=NO 
YAXIS=AUTO
/EMMEANS=TABLES(Group) COMPARE ADJ(LSD)
/PRINT=DESCRIPTIVE HOMOGENEITY
/CRITERIA=ALPHA(.05)
/DESIGN= Group.

Note: The “/Plot” statement may not work in older SPSS versions as this is the 
syntax generated with SPSS version 25. Please refer to ANOVA sections for how to 
plot data set.

Interpreting the output for one- way MANOVA (example 1)

As shown in Table 12.1, IBM SPSS Statistics software (SPSS) generates the Between- 
Subjects Factors table. This table provides information regarding the two groups we 
are examining. The next table (Table 12.2) is the Descriptives Statistics table which 
provides the means, standard deviations, and N for the two dependent variables 
(strength and speed) for each of the two groups (wide receivers and offensive 
linemen).

Table 12.1  Between-subjects factors, reprint courtesy of International Business Machines 
Corporation

Between-Subjects Factors

Value label N

Positions 0 Wide_receivers 40
1 Offensive_linemen 39

Source: © International Business Machines Corporation.

Table 12.2  Descriptive statistics, reprint courtesy of International Business Machines 
Corporation

Descriptive Statistics

Positions Mean Std. deviation N

Strength Index Wide_receivers 64.8250 5.75521 40
Offensive_linemen 84.7179 8.47271 39
Total 74.6456 12.31742 79

Speed Index Wide_receivers 84.1000 6.68255 40
Offensive_linemen 49.7179 6.08254 39
Total 67.1266 18.42891 79

Source: © International Business Machines Corporation.
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 Table 12.3 presents the results for the Box’s Test of Equality of Covariance 
Matrices. Essentially, this test indicates whether or not the observed covariance 
matrices of the outcome (dependent) variables are equal across the three groups, 
serving as an assessment of multivariate homogeneity of variance. As shown in Table 
12.3, the p- value, in this example, is p = 0.110 and is therefore not statistically signi-
ficant. It should be noted, however, that instead of using a p- value of 0.05 as the 
demarcation, a very stringent p- value of 0.001 is used to determine whether or not 
this test is statistically significant.
 Table 12.4 shows the Multivariate Tests which allows us to determine whether or 
not there is a significant effect for group on all the outcome variables. This is, in 
part, akin to determining whether or not the overall F- ratio is statistically significant 
in a one- way ANOVA. Thus, as shown in Table 12.4, Pillai’s Trace is revealed to be 
statistically significant (p < 0.001).2

 As shown in Table 12.5, the Tests of Between- Subjects Effects is essentially the 
univariate tests for the effects of group on each of the outcome variables. Thus, this 
is akin to having two one- way ANOVAs with no adjustments for the correlated 

Table 12.3  Box’s test of equality of covariance matrices, reprint courtesy of International 
Business Machines Corporation

Box’s Test of Equality of Covariance Matricesa

Box’s M 6.207
F 2.011
df1 3
df2 1090273.816
Sig. .110

Source: © International Business Machines Corporation.

Notes
Tests the null hypothesis that the observed covariance matrices of the dependent variables are equal across 
groups.
a Design: Intercept + Group.

Table 12.4  Multivariate tests, reprint courtesy of International Business Machines 
Corporation

Multivariate Testsa

Effect Value F Hypothesis df Error df Sig.

Intercept Pillai’s Trace .995 8243.177b 2.000 76.000 .000
Wilks’ Lambda .005 8243.177b 2.000 76.000 .000
Hotelling’s Trace 216.926 8243.177b 2.000 76.000 .000
Roy’s Largest Root 216.926 8243.177b 2.000 76.000 .000

Group Pillai’s Trace .905 362.939b 2.000 76.000 .000
Wilks’ Lambda .095 362.939b 2.000 76.000 .000
Hotelling’s Trace 9.551 362.939b 2.000 76.000 .000
Roy’s Largest Root 9.551 362.939b 2.000 76.000 .000

Source: © International Business Machines Corporation.

Notes
a Design: Intercept + Group.
b Exact statistic.
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dependent variables. Nevertheless, for all outcome variables the overall F- ratio were 
significant (all p- values <0.001). In a typical ANOVA, the next step is to perform the 
follow- up test to determine which group means are statistically different from one 
another for each of the outcome variables. As shown in Figure 12.1, the Univariate 
Test is the one- way ANOVA and indicates that the overall F- ratio for strength and 
speed is statistically significant. Since we only have two groups, a post-hoc test is not 
needed, but for illustration purposes we have provided the Pairwise Comparisons 
table along with the Estimated Marginal Means table (Figure 12.1). Because the LSD 
(Least Significant Difference) was used for mean comparisons (no adjustment for 
increased Type I error), this should be assessed at the 0.01 level instead of 0.05. 
Regardless, there were significant mean differences between groups for strength and 
speed, respectively.
 Although it may seem obvious that groups differ on both dependent variables, 
due to the high correlation (–0.758) between the variables, a proper assessment 
adjusting for this overlap is warranted. The technique used in this instance is the 
Roy- Bargmann stepdown test, which utilizes an alternative syntax approach in 
SPSS (see below). These stepdown tests are analogous to performing ANCOVAs 
using one of the dependent variables as a covariate. With three or more 
dependent variables, dependent variables are layered in one by one, evaluating 
the effects of each dependent variable with effects of the others accounted for. 
The order for layering dependent variables into the stepdown analyses is deter-
mined by the researcher based on study hypotheses. Whichever order is decided 
by the investigator, as in ANCOVA applications, the homogeneity of regression 
assumption should be assessed prior to performing the Roy- Bargmann test since 
adjustments are being made to the dependent variables by the other variables in 
the model.

Table 12.5  Tests of between-subjects effects, reprint courtesy of International Business Machines 
Corporation

Tests of Between-Subjects Effects

Source Dependent 
variable

Type III sum 
of squares

df. Mean square F Sig.

Corrected Model Strength Index 7814.404a 1 7814.404 149.691 .000
Speed Index 23343.237b 1 23343.237 571.066 .000

Intercept Strength Index 441600.328 1 441600.328 8459.203 .000
Speed Index 353611.389 1 353611.389 8650.707 .000

Group Strength Index 7814.404 1 7814.404 149.691 .000
Speed Index 23343.237 1 23343.237 571.066 .000

Error Strength Index 4019.672 77 52.204
Speed Index 3147.497 77 40.877

Total Strength Index 452019.000 79
Speed Index 382463.000 79

Corrected Total Strength Index 11834.076 78
Speed Index 26490.734 78

Source: © International Business Machines Corporation.

Notes
a R Squared = .660 (Adjusted R Squared = .656).
b R Squared = .881 (Adjusted R Squared = .880).



124  Special statistical procedures

 In our current example using strength and speed as dependent variables, for the 
Roy- Bargmann test, we will first evaluate group differences on speed, followed by 
strength. Therefore, in the Roy- Bargmann tests, speed will be evaluated first, and 
then used as a covariate to evaluate strength. A quick check using syntax from the 
ANCOVA chapter on homogeneity of regression shows no violation of the assump-
tion (p > 0.05). The special MANOVA syntax from SPSS is used for the Roy- 
Bargmann tests, specifying “stepdown” in the print command. Thus, you will first 
need to open a new syntax page in order to type the following commands and 
perform the analyses. To open a new syntax file perform the following steps:

1. Move the cursor to File and then click.
2. Go to New, and then move to the cursor to Syntax.
3. Click on Syntax and a new file will open.
4. After the syntax has been written (see below), highlight the entire syntax and 

then press the green  button near the top of the syntax window.
5. There will be several tables presented in the output display.

a. Go to the table labeled Roy- Bargmann Stepdown F – tests (see below).

Positions
Estimated Marginal Means

95% Confidence Interval for
Differenceb

Lower BoundSig.bStd. Error(I) PositionsDependent Variable (J) Positions

Wide_receiversStrength Index

Speed Index

Offensive_linemen –19.893* 1.626 –23.131 –16.655.000

19.893* 1.626 16.655 23.131.000

34.382* 1.439 31.517 37.247.000

–34.382* 1.439 –37.247 –31.517.000

Offensive_linemen Wide_receivers

Wide_receivers Offensive_linemen

Offensive_linemen Wide_receivers

Mean
Difference (I-J) Upper Bound

*. The mean difference is significant at the .05 level.
b. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments)

Based on estimated marginal means

Pairwise Comparisons

95% Confidence Interval

Lower BoundStd. ErrorPositionsDependent Variable

Wide_receiversStrength Index

Speed Index

64.825 1.142 67.10062.550

84.718 1.157 87.02282.414

84.100 1.011 86.11382.087

49.718 1.024 51.75747.679

Offensive_linemen

Wide_receivers

Offensive_linemen

Mean Upper Bound

Estimates

Sig.F
Sum of
squaresDependent Variable df

ContrastStrength Index

Speed Index

1 7814.404 149.691

571.066

.000

52.204

23343.237 .000

40.877

Error 77

Contrast 1

Error 77

7814.404

4019.672

23343.237

3147.497

Mean
Square

The F tests the effect of Positions. This test is based on the linearly independent
pairwise comparisons among the estimated marginal means.

Univariate Tests

Figure 12.1  Estimated marginal means, reprint courtesy of International Business Machines 
Corporation.

Source: © International Business Machines Corporation.
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MANOVA
SPEED STRENGTH BY GROUP (0,1)
/PRINT = SIGNIF (STEPDOWN), ERROR (COR)
/METHOD UNIQUE
/DESIGN.

Roy- Bargmann stepdown F – tests (example 1)

Variable Hypoth. MS Error MS StepDown F Hypoth. DF Error DF Sig. of F

Speed 23343.23674 40.87659 571.06615 1 77 .000
Strength  1018.86987 52.85908  19.27521 1 76 .000

 Results of the stepdown tests first show differences between wide receivers and 
offensive linemen in terms of speed as the solitary dependent variable. After account-
ing for speed in the model, strength differences are still evident in offensive linemen.

Sample write- up for one- way MANOVA (example 1)

A one- way MANOVA was performed to determine differences in football positions 
on two functional tests: speed and strength. Box’s Test of Equality of Covariance 
Matrices was not significant (p = 0.110), meeting the assumption of multivariate 
homogeneity of variance. The MANOVA revealed significant [Pillai’s Trace = 0.91, 
F(2, 76) = 362.939, p < 0.001] group effects for the multivariate composite of strength 
and speed. Roy- Bargmann stepdown tests are next performed to evaluate group 
differences on the dependent variables, with the higher- priority dependent variable 
being speed. Results show groups differed on speed, Fstepdown(1, 77) = 571.07, 
p < 0.001. Using observed mean values, wide receivers are faster than offensive 
linemen (M = 84.1 vs. M = 49.7). After accounting for speed, strength also yielded 
significant group differences, Fstepdown(1, 76) = 19.28, p < 0.001, with offensive linemen 
being stronger than wide receivers (observed M = 84.7 vs. M = 64.8). As might be 
expected, wide receivers are faster, while offensive linemen are stronger.

Factorial MANOVA (example 2)

Here, we have added another factor with two levels to the previous example. There-
fore, we still have group (wide receivers and offensive linemen), but now have added 
whether or not they played at a Division I academic institution. The dependent vari-
ables are still strength and speed indices. Thus, in this example, we are performing a 
factorial MANOVA with strength and speed as the outcomes variables.

Using SPSS pulldown menu for factorial MANOVA (example 2)

1. Click Analyze, then move the cursor over Multivariate then left click.
2. Click Group, then move it to the Fixed Factor(s) box.
3. Click College_Division, then move it to the Fixed Factor(s) box.
4. Holding the CTRL key down, click Strength and Speed and move them to the 

Dependent Variables box.
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5. Click Descriptives (in newer versions of SPSS click the Options box).

a. Check the boxes for Descriptive statistics and Homogeneity tests.
b. Holding down the CTRL key, and click Group, College_Division, and 

Group*College_Division, then move to Display Means for box (Note: In the 
newer version of SPSS, you will need to click the EM Means button to 
perform the option below).

i. Then click Compare Main Effects.

 1.  Under Confidence Interval Adjustment select LSD from the pull-
down menu.

c. Then click Continue.

6. Click Plots.

a. Then click Group and move to Horizontal Axis.
b. Then click College_Division and move to Separate Lines.
c. Click Add.
d. Click Continue.

7. Click Paste.

a. The syntax below will appear in a new syntax window.
b. For the line starting with /EMMEANS=TABLES(Group*College_Division) 

modify the syntax to:

i. /EMMEANS=TABLES(Group*College_Division) 
Compare(College_Division).

8. Then highlight the entire syntax and press the green  at the top of the syntax.

Syntax for SPSS for factorial MANOVA (example 2)

GLM Strength Speed BY Group College_Division
/METHOD=SSTYPE(3)
/INTERCEPT=INCLUDE
/PLOT=PROFILE(Group*College_Division) TYPE=LINE ERRORBAR=NO 
MEANREFERENCE=NO YAXIS=AUTO
/EMMEANS=TABLES(Group) COMPARE ADJ(LSD)
/EMMEANS=TABLES(College_Division) COMPARE ADJ(LSD)
/EMMEANS=TABLES(Group*College_Division) Compare(College_Division)
/PRINT=DESCRIPTIVE HOMOGENEITY
/CRITERIA=ALPHA(.05)
/DESIGN= Group College_Division Group*College_Division.

Interpreting the output for factorial MANOVA (example 2)

As shown in Table 12.6, SPSS generates the Between- Subjects Factors table similar 
to Table 12.1. In this table, however, college division is the second factor and 
whether or not the subjects are from Division 1 academic institutions.
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 Table 12.7 presents the results for the Box’s Test of Equality of Covariance 
Matrices for this factorial MANOVA example. Similar to example 1, the test is not 
statistically significant (p = 0.947) and, thus, using a p- value of 0.001 as the cutoff 
for the level of statistical significance it can be concluded that the assumption 
was met.
 Table 12.8 shows the Multivariate Tests which allows us to determine whether or 
not there is a significant effect for group, college division, and/or the group × college 
division interaction term. In this example, Pillai’s Trace is statistically significant for 
each factor (group and college division) as well as for the interaction term.
 As shown in Table 12.9, the Tests of Between- Subjects Effects provides informa-
tion regarding the effect of group, college division, and the interaction term 
(group × college division) on each of the outcome variables (strength and speed). In 
this example, the interaction term is statistically significant for both the strength 
(p = 0.018) and speed (p = 0.017) index. The focus of the follow- up testing should be 
on the group × college division interaction for the strength and speed indices. In this 
case, the follow- up test will focus on determining mean differences between posi-
tions across college divisions. As shown in Figure 12.2, the table for Univariate Tests 
indicates that there was no significant overall F- ratio for the strength index for the 
wide receiver position (p = 0.072), whereas for the offensive linemen position the 
overall F- ratio was significant (p < 0.001). Therefore, the table for Pairwise Compari-
sons indicates that for the strength index there was a significant mean difference 

Table 12.6  Between-subjects factors, reprint courtesy of International Business Machines 
Corporation

Between-Subjects Factors

Value label N

Positions 0 Wide_receivers 40
1 Offensive_linemen 39

College division 0 NCAA D1 43
1 Non-NCAA D1 39

Source: © International Business Machines Corporation.

Table 12.7  Box’s test of equality of covariance matrices, reprint courtesy of International 
Business Machines Corporation

Box’s Test of Equality of Covariance Matricesa

Box’s M 3.552
F .365
df1 9
df2 54714.650
Sig. .947

Source: © International Business Machines Corporation.

Notes
Tests the null hypothesis that the observed covariance matrices of the dependent variables are equal 
across groups.
a Design: Intercept + Group + College_Division + Group*College_Division.
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between offensive linemen from Division 1 academic institutions (89.2 ± 1.3) 
compared to non- Division 1 academic institutions (78.9 ± 1.5). In a similar manner, 
for the speed index we find that the overall F- ratio is not significant for the offensive 
linemen (p = 0.799), but is significant for the wide receivers (p = 0.002). Therefore, 
wide receivers from Division 1 academic institutions (87.0 ± 1.3) were faster than 
wide receivers from non- Division 1 academic institutions (80.8 ± 1.4).
 Given the significant multivariate tests, as performed in example 1, we next run 
Roy- Bargmann stepdown tests. Using strength and speed as the dependent variables, 
for the Roy- Bargmann test we type the following syntax:

Positions* College Division

7.475

.323

14.321

–6.368

10.032

–2.379

3.403

4.403

Upper Bound

95% Confidence Interval for
Differenceb

Lower BoundSig.bStd. ErrorPositionsDependent Variable (I) College Division

Wide_receiversStrength Index

Speed Index

NCAA D1

Non-NCAA D1

NCAA D1

Non-NCAA D1

NCAA D1

Non-NCAA D1

NCAA D1

Non-NCAA D1

(J) College Division

NCAA D1

Non-NCAA D1

NCAA D1

Non-NCAA D1

NCAA D1

Non-NCAA D1

NCAA D1

Non-NCAA D1 3.576

–3.576

10.345*

–10.345*

6.206*

–6.206*

–.500

.500

1.957

1.957

1.996

1.996

1.921

1.921

1.959

1.959

–.323

–7.475

6.368

–14.321

2.379

–10.032

–4.403

–3.403

.072

.000

.002

.799

.072

.000

.002

.799

Offensive_linemen

Wide_receivers

Offensive_linemen

Mean
Difference (I-J)

*. The mean difference is significant at the .05 level.
b. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments)

Based on estimated marginal means

Pairwise Comparisons

95% Confidence Interval

Lower BoundStd. ErrorPositionsDependent Variable College Division

Wide_receiversStrength Index

Speed Index

NCAA D1

Non-NCAA D1

NCAA D1

Non-NCAA D1

NCAA D1

Non-NCAA D1

NCAA D1

Non-NCAA D1

66.524

62.947

89.227

78.882

87.048

80.842

49.500

50.000

1.349

1.418

1.318

1.499

1.324

1.392

1.294

1.472

69.211

65.772

91.853

81.869

89.685

83.615

52.077

52.931

63.837

60.122

86.602

75.896

84.410

78.069

46.923

47.069

Offensive_linemen

Wide_receivers

Offensive_linemen

Mean Upper Bound

Estimates

Each F tests the simple effects of College Division within each level combination of the other effects shown.
These tests are based on the linearly independent pairwise comparisons among the estimated marginal means.

Lower BounddfPositionsDependent Variable
Wide_receiversStrength Index

Speed Index

Contrast

Error

Contrast

Error

Contrast

Error

Contrast

Error

127.590

2865.814

1026.269

2865.814

384.121

2760.979

2.397

2760.979

1

75

1

75

1

75

1

75

.072

.000

.002

.799

3.339

26.858

10.434

.065

127.590

38.211

1026.269

38.211

384.121

36.813

2.397

36.813

Offensive_linemen

Wide_receivers

Offensive_linemen

Sum of
squares F Sig.

Univariate Tests

Figure 12.2  Positions college division, reprint courtesy of International Business Machines 
Corporation.

Source: © International Business Machines Corporation.
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MANOVA
SPEED STRENGTH BY GROUP (0,1) COLLEGE_DIVISION (0, 1)
/PRINT = SIGNIF (STEPDOWN), ERROR (COR)
/METHOD = UNIQUE
/DESIGN.

Roy- Bargmann stepdown F – tests for college division (example 2)

Variable Hypoth. MS Error MS StepDown F Hypoth. DF Error DF Sig. of F

Speed 159.16049 36.81305  4.32348 1 75 0.041
Strength 918.71860 38.69170 23.74459 1 74 0.000

Roy- Bargmann stepdown F – tests for group (example 2)

Variable Hypoth. MS Error MS StepDown F Hypoth. DF Error DF Sig. of F

Speed 22867.96112 36.81305 621.19171 1 75 0.000
Strength   702.81586 38.69170  18.16451 1 74 0.000

Roy- Bargmann stepdown F – tests group by college division 
(example 2)

Variable Hypoth. MS Error MS StepDown F Hypoth. DF Error DF Sig. of F

Speed 219.84159 36.81305 5.97184 1 75 0.017
Strength 194.98111 38.69170 5.03935 1 74 0.028

 The Roy- Bargmann tests for the main effects continue to underscore group 
differences for both independent variables and are interpreted in the standard way, 
first evaluating Speed as the sole dependent variable, followed by Strength after 
adjusting for Speed in the model. Overall, both Speed and Strength differ for those 
in different college divisions, and for those who are wide receivers vs. linemen. For 
the significant interaction terms, we next perform simple effects, first with the 
speed index as the sole dependent variable, focusing on college division within 
group. That is, we are aiming to answer the following questions, “Are there speed 
differences between college division wide receivers? How about for offensive 
linemen?” This effectively follows the logic of the Roy- Bargmann stepdown tests, 
which focused first on Speed as the sole dependent variable. This is performed 
using the following syntax:

MANOVA SPEED BY GROUP (0,1) COLLEGE_DIVISION (0,1)
/METHOD = UNIQUE
/DESIGN GROUP, COLLEGE_DIVISION W GROUP (1), COLLEGE_DIVISION 
W GROUP (2).
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Tests of significance for speed using UNIQUE sums of squares

Sources of variation SS DF MS F Sig of F

WITHIN+RESIDUAL 2760.98 75 36.81
GROUP 22867.96 1 22867.96 621.19 0.000
COLLEGE_DIVISION W GROUP(1) 384.12 1 384.12 10.43 0.002
COLLEGE_DIVISION W GROUP(2) 2.40 1 2.40 0.07 0.799
(Model) 23729.76 3 7909.92 214.87 0.000
(Total) 26490.73 78 339.62

 Again, following the logic of the Roy- Bargmann stepdown test, we next perform 
the simple effects test using speed as the covariate and strength as the dependent 
variable. That is, after accounting for speed in the model, we are asking the follow-
ing questions, “Are there strength differences between college division wide receiv-
ers? How about for offensive linemen?” In order to achieve this analysis, the 
following syntax was used to generate the subsequent table.

MANOVA STRENGTH BY GROUP (0,1) COLLEGE_DIVISION (0,1) 
WITH SPEED
/METHOD = SEQUENTIAL
/DESIGN GROUP, COLLEGE_DIVISION W GROUP (1), COLLEGE_DIVISION 
W GROUP (2).

Tests of significance for strength using cov adj SEQUENTIAL sums 
of squares

Sources of variation SS DF MS F Sig of F

WITHIN+RESIDUAL 2863.19 74 38.69
REGRESSION 2.63 1 2.63 0.07 0.795
GROUP 740.72 1 740.72 19.14 0.000
COLLEGE_DIVISION W GROUP(1) 124.32 1 124.32 3.21 0.077
COLLEGE_DIVISION W GROUP(2) 1022.32 1 1022.32 26.42 0.000
(Model) 8970.89 4 2242.72 57.96 0.000
(Total) 11834.08 78 151.72

Sample write- up for factorial MANOVA (example 2)

A factorial MANOVA was performed to determine differences in football positions 
and where or not players were from Division 1 academic institutions on two func-
tional tests: speed and strength. The Box’s Test of Equality of Covariance Matrices 
was not significant (p = 0.947), therefore, it was concluded that the assumption of 
multivariate homogeneity of variance was met. The MANOVA revealed significant 
main effects for group [Pillai’s Trace = 0.91, F(2,74) = 390.76, p < 0.001] and college 
division [Pillai’s Trace = 0.28, F(2,74) = 14.69, p < 0.001] for the multivariate com-
posite of strength and speed. The MANOVA revealed significant [Pillai’s 
Trace = 0.13, F(2,74) = 5.67, p < 0.001] group × college division for the multivariate 
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composite of strength and speed. Roy- Bargmann stepdown tests are next performed 
to evaluate group differences on the dependent variables, with the higher- priority 
dependent variable being speed. The results for the main effect for college division 
revealed a significant finding for both Speed [Fstepdown(1, 75) = 4.32; p = 0.041] and 
Strength [Fstepdown(1, 74) = 23.74; p < 0.001]. Similarly, the results for the main effect 
for group revealed a significant finding for both Speed [Fstepdown(1, 75) = 621.19; 
p < 0.001] and Strength [Fstepdown(1, 74) = 18.16; p < 0.001]. The results for the inter-
action effects revealed a significant finding for Speed, [Fstepdown(1, 75) = 5.97; 
p = 0.017]. After accounting for speed, strength also yielded significant group differ-
ences, [Fstepdown(1, 74) = 5.04; p = 0.028]. Simple main effects testing is next initiated 
to further investigate the interaction findings. Using Speed as the sole dependent 
variable, simple main effects testing shows speed differences for wide receivers in 
Division I vs. non- Division 1, [F(1, 75) = 10.43; p < 0.01], but not for offensive 
linemen, [F(1, 75) = 0.07; p > 0.05]. Next, after accounting for Speed in the model as 
a covariate, simple main effects testing shows no significant strength differences at 
the 0.05 or better level for wide receivers in Division I vs. Division 2, [F(1, 74) = 3.21; 
p = 0.077], but did evidence differences between offensive linemen in Division I vs. 
Division 2, [F(1, 74) = 6.42; p < 0.001].

Notes
1.  With only two levels of the independent variable, a MANOVA is technically a Hotelling’s 

T2, although many just refer to it as a MANOVA.
2.  Because of its robustness to assumption violations, we recommend the use of Pillai’s Trace 

as the test statistic of choice for MANOVA over Wilk’s Λ (1, 2).
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